Ab initio study of mechanism of forming a spiro-Sn-heterocyclic ring compound by cycloaddition reaction of H2C=Sn: and ethylene

Xiaojun Tan, Xiuhui Lu

Abstract


X2C=Sn: (X= H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X2C=Sn: are new study field of stannylene chemistry. The mechanism of cycloaddition reaction of singlet H2C=Sn: with ethylene was studied for the first time by using the MP2/GENECP(C, H in 6-311++G**; Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of tin in H2C=Sn: sidewise overlap with bonding π orbital of ethylene resulting in the formation of an intermediate. Instability of the intermediate make it isomerised to a four-membered ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered ring stannylene and the π orbital of ethylene forms a p→p donor–acceptor bond, the four-membered ring stannylene further combines with ethylene to form another intermediate, and the intermediate further isomerises to a spiro-Sn-heterocyclic ring compound. Sn in the spiro-Sn-heterocyclic ring compound is combined with adjacent atoms by sp3 hybridization. The results of this study reveal the mechanism of cycloaddition reaction of X2C=Sn: with symmetric π bond compounds.

Keywords


H2C=Sn:; four-membered ring stannylene; spiro-Sn-heterocyclic ring compound; potential energy profile

Full Text:

PDF (2,256 kB)

References


P. J. Stang, Chem. Rev. 78 (1978) 383 (https://doi.org/10.1021/cr60314a003)

P. J. Stang, Acc. Chem. Res. 15 (1982) 348 (https://doi.org/10.1021/ar00083a002)

H. Leclercq, I. Dubois, J. Mol. Spectrosc 76 (1979) 39 (https://doi.org/10.1016/0022-2852(79)90216-9)

R. Srinivas, D. Sulzle, H. Schwarz, J. Am. Chem. Soc. 113 (1991) 52 (https://doi.org/-10.1021/ja00001a010)

W. H. Harper, E. A. Ferrall, R. K. Hilliard, S. M. Stogner, R. S. Grev, D. J. Clouthier, J. Am. Chem. Soc. 119 (1997) 8361 (https://doi.org/10.1021/ja9716012)

D. A. Hostutler, T. C. Smith, H. Y. Li, D. J. Clouthier, J. Chem. Phys. 111 (1999) 950 (https://doi.org/10.1063/1.479187)

X. H. Lu, Y. H. Xu, H. B. Yu, W. R. Wu, J. Phys. Chem. A 109 (2005) 6970 (https://doi.org/10.1021/jp0515075)

X. H. Lu, Z. X. Lian, Y. Q. Li, J. Serb. Chem. Soc. 76 (2011) 743 (https://doi.org/10.2298/JSC100820065L)

X. H. Lu, J. H. Han, Z. X. Lian, Y. Q. Li, J. Serb. Chem. Soc. 76 (2011) 1395 (https://doi.org/10.2298JSC10092112)

X. H. Lu, L. Y. Shi, Y. Q. Li, Z. N. Wang, J. Serb. Chem. Soc. 77 (2012) 75 (https://doi.org/10.2298/JSC110115119L)

X. H. Lu, J. J. Ming, J. Serb. Chem. Soc. 81 (2016) 633 (https://doi.org/-10.2298/JSC151130014L)

X. H. Lu, Y. H. Xu, L. Y. Shi, J. F. Han, Z. X. Lian, J. Organomet. Chem. 694 (2009) 4062 (https://doi.org/10.1016/j.jorganchem.2009.08.023)

X. H. Lu, L. Y. Shi, J. J. Ming, Arabian. J. Chem. 9 (2016)163 (http://doi.org/-10.1016/j.arabjc.2015.02.001)

L. A. Curtis, K. Raghavachari, J. A. Pople, J. Chem. Phys. 98 (1993) 1293 (https://doi.org/10.1063/1.464297)

K. Fukui, J. Phys. Chem. 74 (1970) 4161 (https://doi.org/10.1021/j100717a029)

K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys. 66 (1977) 2153 (https://doi.org/10.1063/1.434152)




DOI: https://doi.org/10.2298/JSC180603072T

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)