Theoretical study on the insertion reaction of the phosphenium cation and azirane Scientific paper

Main Article Content

Jinsong Gu
Xiaodong Zhao
Shankui Liu
Xiaojun Tan


The mechanism of the insertion reaction between the phosphenium cation and azirane has been investigated theoretically in order to better under­stand the reactivity for the valence isoelectronic of carbene. The phosphenium cation acts as an electrophilic reagent and accepts the σ electrons of azirane to form a complex in the first combination step. The greater the positive charge on the phosphorus in the phosphenium cation, the more stable is the formed complex. Introduction of substituents will decrease the positive charge on the phosphorus in the phosphenium cation. The order of positive charge on phos­phorus is HP+–F > HP+–OH > HP+–NH2, which is consistent with their Lewis acidities. The complex transforms to a four-membered ring product via a tran­sition state in the second insertion step. The product is more stable than the complex due to the decrease of the ring extension.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
J. Gu, X. Zhao, S. Liu, and X. Tan, “Theoretical study on the insertion reaction of the phosphenium cation and azirane: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 7-8, pp. 857–865, Jul. 2022.
Theoretical Chemistry


J. F. Harrison, R. C. Liedtke, J. F. Liebman, J. Am. Chem. Soc. 101 (1979) 162 (

D. E. Falvey, C. J. Cramer, Tetrahedron Lett. 33 (1992) 1705 (

J. Berkowitz, L. A. Curtiss, S. T. Gibson, J. P. Greene, J. Chem. Phys. 84 (1986) 375 (

J. F. Harrison, J. Am. Chem. Soc. 103 (1981) 7406 (

H. M. Cheng, C. F. Lin, S. Y. Chu, J. Phys. Chem., A 111 (2007) 6890 (

M. G. Thomas, C. W. Schultz, R. W. Parry, Inorg. Chem. 16 (1977) 994 (

J. C. Clyburne, M. J. Schriver, Inorg. Chem. 35 (1996) 3062 (

G. David, E. Niecke, M. Nieger, J. Radseck, W. W. Schoeller, J. Am. Chem. Soc. 116 (1994) 2191 (

J. W. Larson, T. B. McMahon, Inorg. Chem. 26 (1987) 4018 (

J. M. Slattery, S. Hussein, Dalton Trans. 41 (2012) 1808 (

H. P. Műller, D. E. Woon, J. Phys. Chem., A 117 (2013) 13868 (

C. A. Dyker, N. Burford, Chem. Asian J. 3 (2008) 28 (

N. Burford, P. J. Ragogna, R. McDonald, M. J. Ferguson, J. Am. Chem. Soc. 125 (2003) 14404 (

J. J.Weigand, M. Holthausen, R. Fröhlich, Angew. Chem. Int. Ed. 48 (2009) 295 (

N. E. Brasch, I. G. Hamilton, E. H. Krenske, S. Bruce, Organometallics 23 (2004) 299 (

B. Breit, J. Mol. Catal., A 143 (1999) 143 (

A. H. Cowley, R. A. Kemp, Chem. Rev. 85 (1985) 367 (

T. Krachko, J. C. Slootweg, Eur. J. Inorg. Chem. 24 (2018) 2734 (

M. B. Abrams, B. L. Scott, R. T. Baker, Organometallics 19 (2000) 4944 (

D. Gudat, A. Haghverdi, M. Nieger, J. Organomet. Chem. 617 (2001) 383 (

S. Burck, D. Gudat, Inorg. Chem. 47 (2008) 315 (

S. G. He, B. S. Tackett, D. J. Clouthier, J. Chem. Phys. 121 (2004) 257 (

C. Lee, W. Yang, R.G. Parr, Phys. Rev., B 37 (1988) 785 (

Y. Zhao, W. H. Wang, W. L. Feng, W. L. Wang, P. Li, J. Phys. Chem., A 122 (2018) 7312 (

K. Xu, W. W. Wang, W. J. Wei, W. L. Feng, Q. Sun, P. Li, J. Phys. Chem., A 121 (2017) 7236 (

Gaussian 09, Gaussian, Inc., Wallingford, CT, 2010 (