Solvatochromism of isatin based Schiff bases: LSER and LFER study
Main Article Content
Abstract
The derivatives of isatin have already been reported to show a variety of biological activities. However, there has been no report on solvatochromic effect of isatin derivatives so far, and that could be of interest to study and relate to their electronic structure, as a part of the characterisation of these compounds. Linear solvation energy relationships (LSER) were used to analyze solvent influence on the UV absorption maxima shifts of investigated isatin derivatives, i.e. isatin based Schiff bases, by using Kamlet–Taft model. Linear free energy relationships (LFER) were applied to the substituent-induced NMR chemical shifts (SCS) using SSP (single substituent parameter). The obtained correlations together with theoretical calculations gave insight into the influence of the molecular conformation on the transmission of substituent effects, as well as on solute/solvent interactions. The molecular electrostatic potential (MEP) surface map was plotted over the optimized geometry of the molecules in order to visualize electron density distribution and explain origin of solvent/solute interactions.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
A. Medvedev, O. Buneeva, V. Glover, Biologics 1 (2007) 151
G. M. Šekularac, J. B. Nikolić, P. Petrović, B. Bugarski, B. Đurović, S. Ž. Drmanić, J. Serb. Chem. Soc. 79 (2014) 1347
R. W. Daisley, V. K. Shah, J. Pharm. Sci. 73 (1984) 407
E. Piscopo, M. V. Diurno, R. Gogliardi, M. Cucciniello, G. Veneruso, Boll.-Soc. Ital. Biol. Sper. 63 (1981) 827
S. N. Pandeya, D. Sriram, E. De. Clercq, C. Pannecouque, M. Witvrouw, Indian J. Pharm. Sci. 60 (1998) 207
V. A. Muthukumar, H. C. Nagaraj, D. Bhattacherjee, S. George, Int. J. Pharm. Pharm. Sci. 5 (Suppl. 3) (2013) 95
C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley–VCH Verlag, Wienheim, 2004, p. 329
M. J. Kamlet, J. L. M. Abboud, R. W. Taft, An examination of linear solvation energy relationships, in Progress in Physical Organic Chemistry, Vol. 13, R. W. Taft, Ed., Wiley, New York, 1981, p. 485
L. P. Hammett, J. Am. Chem. Soc. 59 (1937) 96
O. Exner, in Advances in Linear Free Energy Relationships, N. B. Champan, J. Shorter, Eds., Plenum Press, London, 1972, p. 1
C. Hansch, A. Leo, D. Hoekman, Exploring QSAR: Hydrophobic, Electronic and Steric Constants, ACS Professional Reference Book, American Chemical Society, Washington DC, 1995
T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 393 (2004) 51
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999
Gaussian 09, revision C.02, Gaussian, Inc., Pittsburgh, PA, 2009
L. Laaksonen, J. Mol. Graphics 10 (1992) 33
M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem. 48 (1983) 2877
F. H. Assaleh, A. D. Marinković, J. Nikolić, N. Ž. Prlainović, S. Drmanić, M. M. Khan, B. Ž. Jovanović, Arabian J. Chem. (2015) doi:10.1016/j.arabjc.2015.08.014
I. Ajaj, J. Markovski, M. Rančić, D. Mijin, M. Milčić, M. Jovanović, A. Marinković, Spectrochim. Acta, A 150 (2015) 575
I. Ajaj, J. Markovski, J. Marković, M. Jovanović, M. Milčić, F. Assaleh, A. Marinković, Struct. Chem. 25 (2014) 1257
S. Chidangil, M. K. Shukla, P. C. Mishra, J. Mol. Model. 4 (1998) 250
F. J. Luque, J. M. Lopez, M. Orozco, Theor. Chem. Acc. 103 (2000) 343.