A survey on the characterization and biological activity of isatin derivatives

Saša Drmanić, Predrag Petrović, Dominik Brkić, Aleksandar Marinković, Jasmina Nikolić

Abstract


The derivatives of isatin have already been known to display a variety of biological activities. Therefore, the studies on their activity and its relation to structure have recently become a popular subject for investigation. The examined compounds were synthesized by the reaction of isatin and substituted primary amines and characterized by spectroscopic methods. The investigation of the antimicrobial and antioxidative activity of the synthesized compounds was performed by broth microdilution method. As for the characterization of the investigated isatin based Schiff bases, the linear solvation energy relationships (LSER) were used to analyze the solvent influence on the UV absorption maxima shifts (νmax), using the well known Kamlet–Taft model and taking geometrical isomers into consideration when possible. Linear free energy relationships (LFER) were used to analyze substituent effect on pKa, NMR chemical shifts and the νmax values. The antimicrobial activity and characterization were related using both experimental and theoretical methods.

 


Keywords


antimicrobial activity; E/Z isomers; solvent effects; substituent effects; TD-DFT; 3D QSAR

Full Text:

PDF (2,135 kB)

References


R. W. Daisley, V. K. Shah, J. Pharm. Sci. 73 (1984) 407 (https://doi.org/10.1002/jps.2600730333)

E. Piscopo, M. V. Diurno, R. Gogliardi, M. Cucciniello, G. Veneruso, Boll. Soc. Ital. Biol. Sper. 63 (1981) 827

S. N. Pandeya, D. Sriram, E. De. Clercq, C. Pannecouque, M. Witvrouw, Ind. J. Pharm. Sci. 60 (1999) 207 (http://www.ijpsonline.com/articles/antihiv-activity-of-some-mannich-bases-of-lsatin-derivatives.pdf)

V. A. Muthukumar, H. C. Nagaraj, D. Bhattacherjee, S. George, Int. J. Pharm. Pharm. Sci. 5 (Suppl. 3) (2013) 95

R. S. Varma, I. A. Khan, Ind. J. Med. Res. 67 (1978) 315

F. D. Popp, H. J. Pajouhesh, Pharm. Sci. 17 (1988) 1052

R. S. Varma, W. L. Nobles, J. Pharm. Sci. 64 (1975) 881 (https://doi.org/10.1002/jps.2600640539)

F. D. Popp, R. Parson, B. E. Donigan, J. Heterocycl. Chem. 17 (1980) 1329 (https://doi.org/10.1002/jhet.5570170639)

F. Kontz, Sci. Pharm. 41 (1973) 123

F. D. Popp, F. P. Silver, A. C. Noble, J. Med. Chem. 10 (1967) 986 (https://pubs.acs.org/doi/pdf/10.1021/jm00317a074)

P. Pakravan, S. Kashanian, M. M. Khodaei, F. J. Harding, Pharmacol. Rep. 65 (2013) 313 (https://doi.org/10.1016/S1734-1140(13)71007-7)

G. M. Šekularac, J. B. Nikolić, P. Petrović, B. Bugarski, B. Đurović, S. Ž. Drmanić, J. Serb. Chem. Soc. 79 (2014) 1347 (https://doi.org/10.2298/JSC140709084S)

D. R. Brkić, A. R. Božić, V. D. Nikolić, A. D. Marinković, H. Elshaflu, J. B. Nikolić, S. Ž. Drmanić, J. Serb. Chem. Soc. 81 (2016) 979 (https://doi.org/10.2298/JSC160119049B)

D. R. Brkić, A. R. Božić, A. D. Marinković, M. K. Milčić, N. Ž. Prlainović, F. H. Assaleh, I. N. Cvijetić, J. B. Nikolić, S. Ž. Drmanić, Spectrochim. Acta Part A. 196 (2018) 16 (https://doi.org/10.1016/j.saa.2018.01.080)

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-Vch Verlag GmbH & Co. KGaA, Wienheim, 2004, p. 329

M. J. Kamlet, J. L. M. Abbound, R. W. Taft, An examination of linear solvation energy relationships, in Progress in Physical Organic Chemistry Vol 13, R.W. Taft, (ed.), Wiley, New York, 1981, p. 485 (https://doi.org/10.1002/9780470171929.ch6)

L. P. Hammett, J. Am. Chem. Soc. 59 (1937) 96 (https://pubs.acs.org/doi/pdf/10.1021/ja01280a022)

O. Exner, The Hammett equation – the present position, in Advances in linear free energy relationship, N. B. Champan, J Shorter, (Eds.), Plenum Press, London, 1972, p 1-69 (ISBN 978-1-4615-8660-9)

C. Hansch, A. Leo, D. Hoekman, J. Med. Chem. 39(5) (1996) 1189 (https://doi.org/10.1021/jm950902o)

Y. Vélez, C. Díaz-Oviedo, R. Quevedo, J. Mol. Struct. 1133 (2017) 430 (https://doi.org/10.1016/j.molstruc.2016.12.039)

Q. X. Guo, Y. W. Liu, X. C. Li, L. Z. Zhong, Y. G. Peng, J. Org. Chem. 77 (2012) 3589 (https://doi.org/10.1021/jo202585w)

P. Davidovich, D. Novikova, V. Tribulovich, S. Smirnov, V. Gurzhiy, G. Melino, A. Garabadzhiu, J. Mol. Struct. 1075 (2014) 450 (https://doi.org/10.1016/j.molstruc.2014.07.008)

K. Jakusová, M. Cigáň, J. Donovalová, M. Gáplovský, R. Sokolík, A. Gáplovský, J. Photochem. Photobiol. A Chem. 288 (2014) 60 (https://doi.org/10.1039/C5RA06625E)

M. Cigáň, M. Gáplovský, K. Jakusová, J. Donovalová, M. Horváth, J. Filo, A. Gáplovský, RSC Adv. 5 (2015) 62449 (https://doi.org/10.1039/C5RA06625E)

Z. H. Chohana, H. Perveza, A. Raufb, K. M. Khanc, C. T. Supurand, J. Enzym. Inhib. Med. Chem. 19 (2004) 417 (https://doi.org/10.1080/14756360410001710383)

E. Piscopo, M. V. Diurno, F. Imperadrice, M. Cucciniello, G. Veneruso, Bollettino - Societa Italiana di Biologia Sperimentale 62 (1986) 1441

J. Panda, V. J. Patro, B. Sahoo, J. Mishra, J. Nanoparticles (2013) Article ID 549502, http://dx.doi.org/10.1155/2013/549502

A. Espinel-Ingroff, A. Fothergill, M. Ghannoum, E. Manavathu, L. Ostrosky-Zeichner, M. Pfaller, M. Rinaldi, W. Schell, T. Walsh, J. Clin. Microbiol. 43 (2005) 5243 (https://doi.org/10.1128/JCM.43.10.5243-5246.2005)

K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, J. Agri. Food Chem. 40 (1992) 945 (https://pubs.acs.org/doi/pdf/10.1021/jf00018a005)

M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem. 48 (1983) 2877 (https://pubs.acs.org/doi/pdf/10.1021/jo00165a018)

F. H. Assaleh, A. D. Marinković, J. Nikolić, N. Ž. Prlainović, S. Drmanić, M. M. Khan, B. Ž. Jovanović, Arab. J. Chem. 12 (2019) 3357 (https://doi.org/10.1016/j.arabjc.2015.08.014)

A. Albert, E. P. Serjeant, The Determination of Ionization Constants, 2nd Edition, Chapman and Hall, London, 1971, p. 44.




DOI: https://doi.org/10.2298/JSC200320020D

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)