Chemical composition of selected winter green pea (Pisum sativum L.) genotypes
Main Article Content
Abstract
Breeding and selection of winter pea for seed quality is a serious challenge to every breeder. The result of breeding mainly depends on good knowledge of the genetic material. Chemical and technological analysis is necessary for an accurate determination of the following traits of technologically mature seed of the winter pea collection: protein content, total nitrogen content, total sugars content, starch content, fatty oil content, cellulose content, and ash content (g (100 g)-1). The protein content in the tested lines of pea was in the range 22.86–28.04 g (100 g)-1, the total nitrogen content 3.66–4.49 g (100 g)-1, total sugars content 10.30–14.67 g (100 g)-1, starch content 39.44–
–46.23 g (100 g)-1, fatty oil content 1.48–1.89 g (100 g)-1, cellulose content 8.79–10.28 g (100 g)-1 and ash content 3.08–3.67 g (100 g)-1. PCA analysis was used to identify the three components that collectively explained 81.59 % of the total variation. The first component was mainly defined by the ash and the total nitrogen, protein and cellulose contents. The second one, independent from the first one, was mainly correlated to the fatty oil and starch contents, while the third was defined by the content of total sugars.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. A. Esposito, L. A. Milanesi, E. A. Martin, V. P. Cravero, A. F. S. Lopez, E. L. Cointry, Int. J. Plant Breed. Gen. 1 (2007) 135
I. M. Kaigorodova, E. P. Pronina, Field Veget. Crops Res. 53 (2016) 38
B. B. Sharma, V. K. Sharma, M. K. Dhakar, S. H. Punetha, Afr. J. Agric. Res. 8 (2013) 4718
P. H. Graham, C. P. Vance, Plant Physiol. 131 (2003) 872
N. Georgieva, I. Nikolova, V. Kosev, J. Biosci. Biotechnol. 5 (2016) 61
P. Smykal, G. Aubert, J. Burstin, J. C. Coyne, N. T. H. Ellis, A. J. Flavell, R. Ford, M. Hybl, J. Macas, P. Neumann, K. E. McPhee, R. J. Redden, D. Rubiales, J. L. Weller, T. D. Warkentin, Agronomy 2 (2012) 74
T. E. C. Kraus, R. A. Dahlgren, R. J. Zasoski, Plant Soil 256 (2003) 41
N. Wang, D. W. Hatcher, T. D. Warkentin, R. Toews, Food Chem. 118 (2010) 109
D. Nikolopoulou, K. Grigorakis, M. Stasini, M. Alexis, K. Iliadis, Eur. Food Res. Technol. 23 (2006) 737
C. Martínez-Villaluenga, P. Gulewicz, J. Frias, K. Gulewicz, C. Vidal-Valverde, Eur. Food Res. Technol. 226 (2008) 1465
N. Wang, D. W. Hatcher, E. J. Gawalko, Food Chem. 111 (2008) 132
W. Al-Marzooqi, J. Wiseman, Anim. Feed Sci. Technol. 153 (2009) 113
B. Szwejkowska, Acta Sci. Polon. – Agric. 4 (2005) 153
M. Barac, S. Cabrilo, M. Pesic, S. Stanojevic, S. Zilic, O. Macej, N. Ristic, Int. J. Mol. Sci. 11 (2010) 4973
S. K. Tiwari, H. L. Singh, R. Kumar, H. K. Nigam, Crop Res. 2 (2001) 237
A. Mikić, V. Mihailović, G. Duc, B. Ćupina, G. Étévé, I. Lejeune-Hénaut, V. Mikić, Zbornik radova Instituta za ratarstvo i povrtarstvo 44 (2007) 107 (in Serbian)
ISO 24557, Pulses - Determination of moisture content - Air-oven method, 2009
AOAC 942.05, Determination of ash in animal feed, AOAC International, Official Methods of Analysis, 14th ed., Washington DC, 1990
AOAC 976.05, Protein (Crude in Animal Feed), AOAC International, Official Methods of Analysis, 14th ed., Washington DC, 1990
AACCI 30-25.01, Crude Fat in Wheat, Corn, and Soy Flour, Feeds, and Mixed Feeds, AACC International Approved Methods of Analysis, 11th ed., St. Paul, MN, 1978
ISO 6541, Agricultural food products - Determination of crude fibre content – Modified Scharrer method, 1996
M. Kovac, Yugoslav Pharmacopoeia (Ph. Jug. V). 2000. Method 2.2.7. Optical rotation. Adjusted translation of European Pharmacopoeia 1997 (Ph. Eur. III) Pharma¬copoeia, 5th ed., Federal Institute for Health Protection and Improvement, Belgrade, 2001
AACCI 80-60.01, Determination of Reducing and Nonreducing Sugars, AACC Inter¬national Approved Methods of Analysis, 11th ed., St. Paul, MN, 1978
N. Wang, J. K. Daun, The Chemical Composition and Nutritive Value of Canadian Pulses, Canadian Grain Commission Grain Research Laboratory 1404 – 303 Main Street Winnipeg MB R3C 3G8, Canada, 2004, pp. 3–7
M. Stanek, Z. Zduńczyk, C. Purwin, S. Florek, Veterinarija zootechnika T. 28 (2004) 71
D. Nikolopoulou, K. Grigorakis, M. Stasini, M. N. A lexis, K. Iliadis, Food Chem. 103 (2007) 847
J. Boye, F. Zare, A. Pletch, Food Res. Int. 43 (2010) 414
A. Pratap, J. Kumar, Biology and Breeding of Food Legumes, CABI, Wallingford, 2011, p. 418
J. D. Wendy, M. F. Lauren, T. T. Robert, Brit. J. Nutrit. 108 (2012) S3
M. Piecyk, R. Wołosiak, B. Druzynska, E. Worobiej, Food Chem. 135 (2012) 1057
S. A. Wani, P. Kumar, J. Food Res. Technol. 2 (2014) 124
K. K. Jadwisieńczak, D. J. Choszcz, S. Konopka, J. Majkowska-Gadomska, K. Głowacka, Zeszyty Problemowe Postepow Nauk Rolniczych. 577 (2014) 63
G. Urbano, M. López-Jurado, S. Frejnagel, E. Gómez-Villalvaa, J. M. Porres, J. Frías, C. Vidal-Valverde, P. Aranda, Nutrition 21 (2005) 230
Đ. Gvozdenović, J. Červenski, J. Gvozdanović-Varga, M. Vasić, D. Jovićević, D. Bugarski, A. Takač, Semenarstvo III, Institut za ratarstvo i povrtarstvo, Novi Sad, SP Print, Novi Sad, 2011, pp.1–802 (in Serbian)
R. B. Cattell, J. Multivar. Behav. Res. 1 (1966) 245
Z. J. Kovačić, Multivarijaciona analiza, Ekonomski fakultet, Beograd, 1994, pp. 1–304 (in Serbian)
Y. Naydenova, V. Kosev, Agric. Sci. Technol. 7 (2015) 293
D. Nikolopoulou, K. Grigorakis, M. Stasini, M. N. Alexis, K. Iliadis, Food Chem. 103 (2007) 847
B. Milošević, Dj. Karagić, V. Mihailović, A. Mikić, S. Vasiljević, I. Pataki, M. Vujaković, Field Veget. Crops Res. 47 (2010) 529
N. Georgieva, I. Nikolova, J. Mountain Agric. Balkans 14 (2011) 140.