Determination of enol form of asymmetric 1,3-dicarbonyl compounds: 2D HMBC NMR data and DFT calculations

Main Article Content

Meltem Tan
İshak Bildirici
Nurettin Mengeş

Abstract

In this study, a series of asymmetric aryl 1,3-dicarbonyl compounds were synthesized and their enol forms were observed via experimental data and theoretical calculations. According to the 1H- and 13C-NMR results, all the investigated compounds were found as a single enol form in CDCl3 solution. Moreover, their HMBC spectra were applied to identify the observed enol forms and correlations between certain protons and carbon atoms were con­sidered. The dihedral angles of the asymmetric compounds that have aryl units on both sides were calculated by DFT to understand the reason for the observed enol forms. Small dihedral angles caused longer conjugation, resulting in more stable compounds and it was found that the observed enol forms were based on small dihedral angles, namely, resonance is the driving force. Furthermore, the compounds possessing both aryl and alkyl moieties prefer the enol form towards the aromatic ring side due to longer conjugation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Tan, İshak Bildirici, and N. Mengeş, “Determination of enol form of asymmetric 1,3-dicarbonyl compounds: 2D HMBC NMR data and DFT calculations”, J. Serb. Chem. Soc., vol. 83, no. 9, pp. 953–968, Sep. 2018.
Section
Organic Chemistry
Author Biographies

Meltem Tan, Faculty of Pharmacy, Van Yüzüncü Yıl University, 65080, Van

Faculty of Pharmacy, Assistant Professor

İshak Bildirici, Faculty of Pharmacy, Van Yüzüncü Yıl University, 65080, Van

Faculty of Pharmacy, Professor

Nurettin Mengeş, Faculty of Pharmacy, Van Yüzüncü Yıl University, 65080, Van

Faculty of Pharmacy, Assistant Professor

References

E. D. Raczynska, W. Kosinska, B. Osmialowski, R. Gawinecki, Chem. Rev. 105 (2005) 3561 (https://doi.org/10.1021/cr030087h)

S. Karabulut, H. Namlı, J. Mol. Struct. 1024 (2012) 151 (https://doi.org/10.1016/-j.molstruc.2012.05.029)

C. M. Yvonne, J. Com¬put.-Aided Mol. Des. 23 (2009) 693 (https://doi.org/10.1007/¬s10822-009-9303-2)

a) D. J. Kuo, I. A. Rose, J. Am. Chem. Soc. 100 (1978) 6288 (https://doi.org/10.1007/s10822-009-9303-2); b) D. J. Kuo, E. L. OConnell, I. A. Rose, J. Am. Chem. Soc. 101 (1979) 5025 (https://doi.org/10.10¬21/ja00511a037); c) D. J. Kuo, I. A. Rose, J. Am. Chem. Soc. 104 (1982) 3235 (https://doi.org/10.10-21/ja00375a058); d) S. J. Grabowski, T. M. Krygowski, B. Stepien, J. Phys. Org. Chem. 13 (2000) 740 (https://doi.org/10.1002/1099-1395(200011)13:11<740::AID-POC304>¬3.0.CO;2-1)

a) L. Claisen, Liebigs Ann. Chem. 291 (1896) 25 (https://doi.org/10.1002/jlac.1896¬2910106); b) W. L. Wislicenus, Liebigs Ann. Chem. 291 (1896) 147 (https://doi.org/¬10.1002/jlac.18962910108); c) L. Knorr, Liebigs Ann. Chem. 293 (1896) 70 (https://doi.¬org/10.1002/jlac.18962930107)

J. Zawadiak, M. Mrzyczek, Spectrochim. Acta, A 75 (2010) 925 (https://doi.org/10.1016/j.saa.2009.12.040)

J. Zawadiak, M. Mrzyczek, Spectrochim. Acta, A 96 (2012) 815 (https://doi.org/10.1016/j.saa.2012.07.109)

S. F. Tayyari, F. Naghav, S. Pojhan, R. W. McClurg, R. E. Sammelson, J. Mol. Struct. 987 (2011) 241 (https://doi.org/10.1016/j.molstruc.2010.12.034)

W. C. Plessis, T. G. Vosloo, J. C. Swarts, J. Chem. Soc., Dalton Trans. 15 (1998) 2507 (https://doi.org/10.1039/A802398K)

W. C. Plessis, J. J. C. Erasmus, G. J. Lamprecht, J. Conradie, T. S. Cameron, M. A. S. Aquino, J. C. Swarts, Can. J. Chem. 77 (1999) 378 (https://doi.org/10.1139/v99-015)

W. C. Plessis, W. L. Davis, S. J. Cronje, J. C. Swarts, Inorg. Chim. Acta 314 (2001) 97 (https://doi.org/10.1016/S0020-1693(01)00292-4)

J. Berger, L. A. Flippin, R. Greenhouse, S. Jaime-Figueroa, Y. Liu, A. K. Miller, D. G. Putman, K. K. Weinhardt, S. H. Zhao, US, 5.863.924 (1999)

A. Rojas, A. Perez-Encabo, I. Herraiz-Sierra, C. A. Blanco, Can. J. Chem. 79 (2001) 448 (https://doi.org/10.1139/v01-061)

A. Nekoei, S. F. Tayyari, M. Vakili, S. Holakoei, A. H. Hamidian, R. E. Sammelson, J. Mol. Struct. 932 (2009) 112 (https://doi.org/10.1016/j.molstruc.2009.05.045)

M. A. Dobrowolski, M. K. Cyranski, Z. Wrobel, Phys. Chem. Chem. Phys. 18 (2016) 11813 (https://doi.org/10.1039/c5cp07056b)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

C. Lee, W. Yang, R. G. Parr Yang, Phys. Rev. B: Condens. Matter Mater. Phys. 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010

S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117 (https://doi.org/-10.1016/0301-0104(81)85090-2)

J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005), 2999 (https://doi.org/¬10.1016/0301-0104(81)85090-2)

S. Miao, S. M. Brombosz, P. R. Schleyer, J. J. Wu, S. Barlow, S. R. Marder, K. I. Hardcastle, U. H. F. Bunz, J. Am. Chem. Soc. 130 (2008) 7339 (https://doi.org/10.1016/0301-0104(81)85090-2)

H. Cheema, A. Peddapuram, R. E. Adams, L. McNamara, L. A. Hunt, N. Le, D. L. Watkins, N. I. Hammer, R. H. Schmehl, J. H. Delcamp, J. Org. Chem. 82 (2017) 12038 (https://doi.org/10.1021/acs.joc.7b01750)

S. Gümüş, N. Aslan, N. N. Büyükadalı, A. Gümüş, Tetrahedron: Asymmetry 28 (2017) 479 (https://doi.org/10.1016/j.tetasy.2017.02.014)

F. Milletti, A. Vulpetti, J. Chem. Inf. Model. 50 (2010) 1062 (https://doi.org/10.1021/ci900501c).