A simple relationship of bond dissociation energy and average charge separation to impact sensitivity for nitro explosives
Main Article Content
Abstract
6-311++G** basis set. A comparison between BDE and the impact sensitivity H50 showed that cleavage of the weakest bond plays an important role in the initiation of detonation. Using the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) method and dispersion-corrected density functional theory (DFT-D), the simulation of compressed TNT (2-methyl-1,3,5-
-trinitrobenzene) and royal demolition explosive (RDX, hexahydro-
-1,3,5-trinitro-1,3,5-triazine) crystals showed that an imbalance of the electrostatic surface potential (ESP) leads to molecular deformation and instability of the explosive under impact pressures. The average charge separation (П) of the molecules was calculated and used to demonstrate the ESP balances. Based on the BDE, П and the experimental H50 values, simple quantitative structure–sensitivity correlations were established for the nitro heterocycles, nitramines, picryl heterocycles and nitro aromatics, respectively. The fitting relationship is simple yet statistically significant with only two variables. The correlation coefficients, R2, are larger than 0.8 with F>F**(0.05) (95 % confidence intervals).
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
National Research Council, Advance Energetic Materials, The National Academies Press, Washington DC, 2004 (https://www.nap.edu/catalog/10918/advanced-energetic-materials)
P. Politzer, J. S. Murray, J. Mol. Model. 21 (2015) 2578 (http://dx.doi.org/10.1007/s00894-015-2578-4)
P. Politzer, J. S. Murray, Propellants, Explo. Pyrotech. 41 (2016) 414 (http://dx.doi.org/10.1002/prep.201500349)
J. Li, J. Phys. Chem. B 114 (2010) 2198 (http://dx.doi.org/10.1021/jp909404f)
J. J. Sabatini, K. D. Oyler, Crystals 6 (2016) 5 (http://dx.doi.org/10.3390/cryst6010005)
M. H. Keshavarz, M. Ghaffarzadeh, M. R. Omidkhah, K. Farhadi, Z. Anorg. Allg. Chem. 24 (2017) 2158 (http://dx.doi.org/10.1002/zaac.201700400)
C. Y. Zhi, X. L. Cheng, Propellants, Explo. Pyrotech. 35 (2010) 555 (http://dx.doi.org/10.1002/prep.200900092)
T. B. Brill, K. J. James, Chem. Rev. 93 (1993) 2667 (http://dx.doi.org/10.1021/cr00024a005)
C. F. Melius, J. Phys. Colloq. 48 (1987) 341 (https://doi.org/10.1051/jphyscol:1987425)
B. M. Rice, S. Sahu, F. J. Owens, J. Mol. Struct.: THEOCHEM 583 (2002) 69 (https://doi.org/10.1016/S0166-1280(01)00782-5)
P. Lienard, J. Gavartin, G. Boccardi, M. Meunier, Pharm. Res. 32 (2015) 300 (https://doi.org/10.1007/s11095-014-1463-7)
C. Y. Zhang, Y. J. Shu, Y. G. Huang, J. Energ. Mater. 2 (2005) 107 (https://doi.org/10.1080/07370650590936433)
J. G. Aston, C. W. Siller, G. H. Messerly, J. Am. Chem. Soc. 59 (1937) 1743 (https://doi.org/10.1021/ja01288a054)
J. A. Manion, J. Phys. Chem. Ref. Data 31 (2002) 123 (https://doi.org/10.1063/1.1420703)
M. W. Chase, J. Phys. Chem. Ref. Data, Monogr. 9 (1998) 1 (https://web-book.nist.gov/cgi/cbook.cgi?ID=C7664417&Units=SI&Mask=1#Thermo-Gas)
Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009 (http://gaussian.com/g09citation/)
S. Y. Mary, E. S. Al-Abdullah, H. I. Aljohar, B. Narayana, P. S. Nayak, B. K. Sarojini, S. Armakovic, S. J. Armakovic, C. Van Alsenoy, A. A. El-Emam, J. Serb. Chem. Soc. 83 (2018) 1 (https://doi.org/10.2298/JSC170103056M)
F. Vlahovic, S. Ivanovic, M. Zlatar, M. Gruden, J. Serb. Chem. Soc. 82 (2017) 1369 (https://doi.org/10.2298/JSC170725104V)
X. H. Li, R. Z. Zhang, X. Z. Zhang, J. Hazard. Mat. 183 (2010) 622 (https://doi.org/10.1016/j.jhazmat.2010.07.070)
X. H. Li, Z. X. Tang, X. D. Yang, Int. J. Quantum Chem. 109 (2009) 1403 (https://doi.org/10.1002/qua.21952)
X. J. Xu, H. M. Xiao, X. H. Ju, J. Phys. Chem., A 110 (2006) 5929 (https://doi.org/10.1021/jp0575557)
P. Politzer, J. S. Murray, Struct. Chem. 28 (2017) 1045 (https://doi.org/10.1007/s11224-016-0909-4)
T. Lu, F. W. Chen, J. Mol. Graphics Modell. 38 (2012) 314 (https://doi.org/10.1016/j.jmgm.2012.07.004)
Chemistry and Physics of Energetic Materials, S. N. Bulusu, Ed., Springer Science & Business Media, New York, 2012 (https://www.springer.com/us/book/9780792307457)
P. F. Pagoria, G. S. Lee, A. R. Mitchell, Thermochim. Acta 384 (2002) 187 (https://doi.org/10.1016/S0040-6031(01)00805-X)
A. V. Dubovik, A. V. Apolenis, V. E. Annikov, E. I. Aleshkina, Combust., Explos. Shock Waves 44 (2008) 360 (https://doi.org/10.1007/s10573-008-0044-7)
R. D. Gilardi, R. J. Butcher, Acta Crystallogr., E 57 (2001) 757 (https://doi.org/10.1107/S1600536801011722)
R. L. Simpson, P. A. Urtiew, D. L. Ornellas, Propellants, Explo. Pyrotech. 22 (1997) 249 (https://doi.org/10.1002/prep.19970220502)
R. Sivabalan, G. M. Gore, U. R. Nair, J. Hazard. Mat. 139 (2007) 199 (https://doi.org/10.1016/j.jhazmat.2006.06.027)
Discovery Studio Modelling Environment, Accelrys Software Inc., Release 6.0, San Diego, CA, 2007
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne, Z. Kristallogr. – Cryst Mater. 220 (2005) 567 (https://doi.org/10.1524/zkri.220.5.567.65075)
B. Delley, J. Chem. Phys. 92 (1990) 508 (https://doi.org/10.1063/1.458452)
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 (https://doi.org/10.1103/PhysRevLett.77.3865)
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)
R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, T. Gelbrich, Cryst. Growth Des. 3 (2003) 1027 (https://doi.org/10.1021/cg0340704)
V. V. Zhurov, E. A. Zhurova, A. I. Stash, A. A. Pinkerton, Acta Crystallogr., A 67 (2011) 160 (https://doi.org/10.1107/S0108767310052219).