A simple relationship of bond dissociation energy and average charge separation to impact sensitivity for nitro explosives

Zheng Mei, Fengqi Zhao, Siyu Xu, Xuehai Ju

Abstract


The bond dissociation energy (BDE) of the weakest bonds in 33 explosives were calculated and analyzed using B3LYP method with 6-311++G** basis set. The comparison between the BDE and the impact sensitivity H50 show that the weakest bond cleavage played an important role in the initiation of detonation. Using GGA approximation with PBE method and DFT-D correction, the simulation of compressed TNT and RDX crystals exhibited that the imbalance of the electrostatic surface potential (ESP) leads to the molecular deformation and instability of the explosive under impact pressures. The average charge separation (П) of the molecules was calculated and used to demonstrate the ESP balances. Based on the BDE, П and the experimental H50, simple quantitative structure-sensitivity correlations were established for the nitro heterocycles, nitramines, picryl heterocycles, and nitro aromatics, respectively. The fitting relationship is a simple yet statistically significant with only two variables. The correlation coefficients R2 are larger than 0.8 with F>F**(0.05) (95 % confidence intervals).

Keywords


electrostatic surface potential; nitro explosives; density functional theory; energetic compounds

Full Text:

PDF (2.377 kB)

References


National Research Council, Advance Energetic Materials, The National Academies Press, Washington DC 2004. (https://www.nap.edu/catalog/10918/advanced-energetic-materials)

P. Politzer, J. S. Murray, J. Mol. Model. 21 (2015) 2578 (http://dx.doi.org/10.1007/s00894¬-015-2578-4).

P. Politzer, J. S. Murray, Propell Explos. Pyrot. 41 (2016) 414, (http://dx.doi.org/10.1002/prep.201500349).

J. Li, J. Phys. Chem. B 114 (2010) 2198 (http://dx.doi.org/10.1021/jp909404f).

J. J. Sabatini, K. D. Oyler, Crystals, 6 (2016) 5 (http://dx.doi.org/10.3390/cryst6010005).

M. H. Keshavarz, M. Ghaffarzadeh, M. R. Omidkhah, K. Farhadi, Z. Anorg. Allg. Chem. 24 (2017) 2158, (http://dx.doi.org/10.1002/zaac¬.201700400)

C. Y. Zhi, X. L. Cheng, Propell Explos. Pyrot., 35 (2010) 555 (http://dx.doi.org/10.1002/prep.200900092).

T. B. Brill, K. J. James, Chem. Rev. 93 (1993) 2667 (http://dx.doi.org/10.1021/cr00024a005).

C. F. Melius, J. Phys. Colloques 48 (1987) 341 (https://doi.org/10.1051/jphyscol:1987425).

B. M. Rice, S. Sahu, F. J. Owens, J. Mol. Struc-Theochem, 583 (2002) 69 (https://doi.org/10.1016/S0166-1280(01)00782-5).

P. Lienard, J. Gavartin, G. Boccardi, M. Meunier, Pharmaceutical Research 32 (2015) 300 (https://doi.org/10.1007/s11095-014-1463-7).

C. Y. Zhang, Y. J. Shu, Y. G. Huang, J. Ener. Mater. 2 (2005) 107 (https://doi.org/10.1080/07370650590936433).

J. G. Aston, C. W. Siller, G. H. Messerly, J. Am. Chem. Soc. 59 (1937) 1743 (https://webbook.nist.gov/cgi/cbook.cgi?ID=C74895&Units=SI&Mask=1#¬Thermo-Gas).

J. A. Manion, J. Phys. Chem. Ref. Data 31 (2002) 123 (https://doi.org/10.1063/1.1420703).

M. W. Chase, J. Phys. Chem. Ref. Data, Monograph 9 (1998) 1 (https://webbook.nist.gov/cgi/cbook.cgi?ID=C7664417&Units=SI&Mask=1#Thermo-Gas).

Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. (http://gaussian.com/g09citation/).

S. Y. Mary, E. S. Al-Abdullah, H. I. Aljohar, B. Narayana, P. S. Nayak, B. K. Sarojini, S. Armakovic, S. J. Armakovic, C. Van Alsenoy, A. A. El-Emam, J. Serb. Chem. Soc. 83 (2018) 1 (https://doi.org/10.2298/JSC170103056M).

F. Vlahovic, S. Ivanovic, M. Zlatar, M. Gruden, J. Serb. Chem. Soc 82 (2017) 1369 (https://doi.org/10.2298/JSC170725104V):

X. H. Li, R. Z. Zhang, X. Z. Zhang, J. Hazard. Mat. 183 (2010) 622 (https://doi.org/10.1016/j.jhazmat.2010.07.070).

X. H. Li, Z. X. Tang, X. D. Yang, Int. J. Quantum Chem. 109 (2009) (1403, https://doi.org/10.1002/qua.21952).

X. J. Xu, H. M. Xiao, X. H. Ju, J. Phys. Chem. A 110 (2006) 5929 (https://doi.org/10.1021/jp0575557).

P. Politzer, J. S. Murray, Structural Chemistry, 28 (217) 1045 (https://doi.org/10.1007/s11224-016-0909-4).

T. Lu, F. W. Chen, J. Mol. Graph. Model. 38 (2012) 314 (https://doi.org/10.1016/j.jmgm.2012.07.004).

S. N. Bulusu, Chemistry and Physics of Energetic Materials, Springer Science & Business Media, 2012 (https://www.springer.com/us/book/9780792307457).

P. F. Pagoria, G. S. Lee, A. R. Mitchell, Thermochim. Acta 384 (2002) 187 (https://doi.org/10.1016/S0040-6031(01)00805-X).

A. V. Dubovik, A. V. Apolenis, V. E. Annikov, E. I. Aleshkina, Combust. Explo. Shock+ 44 (2008) 360 (https://doi.org/10.1007/s10573-008-0044-7).

R. D. Gilardi, R. J. Butcher, Acta Crystallogr. E 57 (2001) 757 (https://doi.org/10.1107/S1600536801011722).

R. L. Simpson, P. A. Urtiew, D. L. Ornellas, Propell Explos. Pyrot. 22 (1997) 249 (https://doi.org/10.1002/prep.19970220502).

R. Sivabalan, G. M. Gore, U. R. Nair, J. Hazard. Mat. 139 (2007) 199, https://doi.org/10.1016/j.jhazmat.2006.06.027

Accelrys Software Inc., Discovery Studio Modelling Environment, Release 6.0, San Diego: Accelrys Software Inc., 2007.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne, Z. Krist-Cryst Mater. 220 (2005) 567 (https://doi.org/10.1524/zkri.220.5.567.65075).

B. Delley, J. Chem. Phys. 92 (1990) 508 (https://doi.org/10.1063/1.458452).

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Let. 77 (1996) 3865 (https://doi.org/10.1103/PhysRevLett.77.3865).

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344).

R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, T. Gelbrich, Cryst. Growth Des. 3 (2003) 1027 (https://doi.org/10.1021/cg0340704).

V. V. Zhurov, E. A. Zhurova, A. I. Stash, A. A. Pinkerton, Acta Crystallogr. A 67 (2011) 160 (https://doi.org/10.1107/S0108767310052219).




DOI: https://doi.org/10.2298/JSC180404059M

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)