Decomposition mechanism of dihydroxylammonium 5,5'-bis(tetrazole)-1,1'-diolate on Al(111) surface by periodic DFT calculation

Main Article Content

Ying Zhao
Xiaoling Xing
Shengxiang Zhao
Xuehai Ju

Abstract

The generalized gradient approximation (GGA) of density function theory (DFT) methods are employed to investigate the decomposition of TKX-50 molecule on the Al(111) surface. The calculation employs an Al supercell slab model and periodic boundary conditions. Five kinds of adsorption con­figurations for TKX-50 on Al surface are studied. The TKX-50 is adsorbed on Al surface to form the N–Al, O–Al and OH–Al bonds. The adsorption energies are in the range from –113.15 to –1334.40 kJ/mol. The activation energies of all configurations are in the range of 100.34–354.10 kJ/mol. The N1-N2 rup­tures in V1 and N2-N3 ruptures in V2 takes place easily. The activation energies of these two bonds rupture (100.34 and 108.06 kJ/mol, respectively) are less than that of pure TKX-50 (161.58 and 215.99 kJ/mol). Al atoms pro­mote the breaking of the tetrazole ring of TKX-50. The quantities of electron transfer from Al atoms to TKX-50 are in range of 1.42–4.90 e.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Y. Zhao, X. Xing, S. Zhao, and X. Ju, “Decomposition mechanism of dihydroxylammonium 5,5’-bis(tetrazole)-1,1’-diolate on Al(111) surface by periodic DFT calculation”, J. Serb. Chem. Soc., vol. 85, no. 5, pp. 651–660, May 2020.
Section
Theoretical Chemistry
Author Biographies

Ying Zhao, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094

Department:School of Chemical Engineering

Rank:Phd candidate

Xiaoling Xing, Xian Modern Chemistry Research Institute, Xian 710065

Department:School of Chemical Engineering

Rank:Full times professor

Shengxiang Zhao, Xian Modern Chemistry Research Institute, Xian 710065

Department: Xian Modern Chemistry Research Institute

Rank: Professor

Xuehai Ju, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094

Department:School of Chemical Engineering

Rank:Full times professor

References

M. Celina, L. Minier, R. Assink, Thermochim. Acta 384 (2002) 343 (https://doi.org/10.1016/S0040-6031(01)00793-6)

M. Gaurav, P. A. Ramakrishna, Combust. Flame 166 (2016) 203 (https://doi.org/10.1016/j.combustflame.2016.01.019)

A. Dokhan, E. W. Price, J. M. Seitzman, R. K. Sigman, Proc. Combust. Inst. 29 (2002) 2939 (https://doi.org/10.1016/S1540-7489(02)80359-5)

S. Verma, P. A. Ramakrishna, J. Propul. Power 29 (2013) 1200 (https://doi.org/10.2514/1.B34772)

N. Fischer, D. Fischer, T. M. Klapotke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 22 (2012) 20418 (https://doi.org/10.1039/c2jm33646d)

H. F. Huang, Y. M. Shi, J. Yang, J. Therm. Anal. Calorim. 121 (2015) 705 (https://doi.org/10.1007/s10973-015-4472-9)

Q. An, W. G. Liu, W. A. Goddard, T. Cheng, S. V. Zybin, H. Xiao, J. Phys. Chem., C 118 (2014) 27175 (https://doi.org/10.1021/jp509582x)

B. Yuan, Z. J. Yu, E. R. Bernstein, J. Phys. Chem., A 142 (2015) 10247 (https://doi.org/10.1063/1.4916111)

J. F. Wang, S. S. Chen, S. H. Jin, R. Shi, Z. F. Yu, Q. Su, X. Ma, C. Y. Zhang, Q. H. Shu, J. Therm. Anal. Calorim. 134 (2018) 2049 (https://doi.org/10.1007/s10973-018-7820-8)

S. Q. Zhou, Y. Y. Wu, S. Y. Xu, F. Q. Zhao, X. H. Ju, Can. J. Chem. 84 (2000) 705 (https://doi.org/10.1139/cjc-2015-0278)

J. X. Guo, L. Guan, F. Bian, Q. X. Zhao, Y. L. Wang, B. T. Liu, Surface Interf. Anal. 43 (2011) 940 (https://doi.org/10.1002/sia.3665)

Acceryls Inc., Material Studio 7.0., Acceryls Inc, San Diego, CA, 2013

M. R. Elahifard, M. P. Jigato, J. W. Niemantsverdriet, Surface Interf. Anal. 13 (2012) 89 (https://doi.org/10.1002/cphc.201100733)

A. Govender, D. C. Ferre, J. W. Niemantsverdriet, Chem. Phys. Chem. 13 (2012) 1591 (https://doi.org/10.1002/cphc.201100733)

V. A. Ranea, T. J. Strathmann, J. R. Shapley, W. F. Schneider, Phys. Chem. 3 (2011) 898 (https://doi.org/10.1002/cctc.201000398)

R. Q. Liu, Comput. Theor. Chem. 1019 (2013) 141 (https://doi.org/10.1016/j.comptc.2013.07.009)

X. Wang, P. Qian. K. H. Song, C. Zhang, J. Dong. Comput. Theor. Chem. 1025 (2013) 16 (https://doi.org/10.1016/j.comptc.2013.09.025)

M. Rouhani. B, Al, Ga, Si and Ge doped graphene, J. Mol. Struct. 1181 (2019) 518 (https://doi.org/10.1016/j.molstruc.2019.01.006)

N. Yildirim, N. Demir, G. Alpaslan, B. Boyacioglu, M. Yildiz, H. Unver, J Serb. Chem. Soc. 83 (2018) 6 (https://doi.org/10.2298/JSC171001009Y)

J. Z. Yu, F. Q. Zhao, S. Y. Xu, X. H. Ju, J. Serb. Chem. Soc. 82 (2017) 163 (https://doi.org/10.2298/JSC160331084Y)

M. Rafique, Y. S. M. Hassana, J. Mol. Struct. 1142 (2017) 11 (https://doi.org/10.1016/j.molstruc.2017.04.045)

E. Escamilla-Roa, V. Timón, A. Hernández-Laguna, J. Mol. Struct. 981 (2012) 59 (https://doi.org/10.1016/j.comptc.2011.11.046)

C. J. Pickard, M. C. Payne, Phys. Rev., B 62 (2000) 4383 (https://doi.org/10.1103/PhysRevB.62.4383)

J. P. Perdew, W. Yue, Phys. Rev., B 33 (1986) 8800 (https://doi.org/10.1103/PhysRevB.33.8800)

M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, S. Botti, Phys. Rev., B 83 (2011) 035119 (https://doi.org/10.1103/PhysRevB.83.035119)

A. Mokhtari, A. Ribeiro, IEEE Trans. Signal Process. 62 (2014) 6089 (https://doi.org/10.1109/TSP.2014.2357775)

C. C. Ye, F. Q. Zhao, S. Y. Xu, X. H. Ju, J. Mol. Model. 19 (2013) 4459 (https://doi.org/10.1007/s00894-013-1942-5)

C.C. Ye, Q. An, S.Y. Xu, X.H. Ju. Surface Interf. Anal. 49 (2017) 441 (https://doi.org/10.1002/sia.6177)

D. Shahabi, H. Tavakol, Comput. Theor. Chem. 1127 (2018) 8 (https://doi.org/10.1016/j.comptc.2018.02.001).