Decomposition mechanism of dihydroxylammonium 5,5'-bis(tetrazole)-1,1'-diolate on Al(111) surface by periodic DFT calculation
Main Article Content
Abstract
The generalized gradient approximation (GGA) of density function theory (DFT) methods are employed to investigate the decomposition of TKX-50 molecule on the Al(111) surface. The calculation employs an Al supercell slab model and periodic boundary conditions. Five kinds of adsorption configurations for TKX-50 on Al surface are studied. The TKX-50 is adsorbed on Al surface to form the N–Al, O–Al and OH–Al bonds. The adsorption energies are in the range from –113.15 to –1334.40 kJ/mol. The activation energies of all configurations are in the range of 100.34–354.10 kJ/mol. The N1-N2 ruptures in V1 and N2-N3 ruptures in V2 takes place easily. The activation energies of these two bonds rupture (100.34 and 108.06 kJ/mol, respectively) are less than that of pure TKX-50 (161.58 and 215.99 kJ/mol). Al atoms promote the breaking of the tetrazole ring of TKX-50. The quantities of electron transfer from Al atoms to TKX-50 are in range of 1.42–4.90 e.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Celina, L. Minier, R. Assink, Thermochim. Acta 384 (2002) 343 (https://doi.org/10.1016/S0040-6031(01)00793-6)
M. Gaurav, P. A. Ramakrishna, Combust. Flame 166 (2016) 203 (https://doi.org/10.1016/j.combustflame.2016.01.019)
A. Dokhan, E. W. Price, J. M. Seitzman, R. K. Sigman, Proc. Combust. Inst. 29 (2002) 2939 (https://doi.org/10.1016/S1540-7489(02)80359-5)
S. Verma, P. A. Ramakrishna, J. Propul. Power 29 (2013) 1200 (https://doi.org/10.2514/1.B34772)
N. Fischer, D. Fischer, T. M. Klapotke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 22 (2012) 20418 (https://doi.org/10.1039/c2jm33646d)
H. F. Huang, Y. M. Shi, J. Yang, J. Therm. Anal. Calorim. 121 (2015) 705 (https://doi.org/10.1007/s10973-015-4472-9)
Q. An, W. G. Liu, W. A. Goddard, T. Cheng, S. V. Zybin, H. Xiao, J. Phys. Chem., C 118 (2014) 27175 (https://doi.org/10.1021/jp509582x)
B. Yuan, Z. J. Yu, E. R. Bernstein, J. Phys. Chem., A 142 (2015) 10247 (https://doi.org/10.1063/1.4916111)
J. F. Wang, S. S. Chen, S. H. Jin, R. Shi, Z. F. Yu, Q. Su, X. Ma, C. Y. Zhang, Q. H. Shu, J. Therm. Anal. Calorim. 134 (2018) 2049 (https://doi.org/10.1007/s10973-018-7820-8)
S. Q. Zhou, Y. Y. Wu, S. Y. Xu, F. Q. Zhao, X. H. Ju, Can. J. Chem. 84 (2000) 705 (https://doi.org/10.1139/cjc-2015-0278)
J. X. Guo, L. Guan, F. Bian, Q. X. Zhao, Y. L. Wang, B. T. Liu, Surface Interf. Anal. 43 (2011) 940 (https://doi.org/10.1002/sia.3665)
Acceryls Inc., Material Studio 7.0., Acceryls Inc, San Diego, CA, 2013
M. R. Elahifard, M. P. Jigato, J. W. Niemantsverdriet, Surface Interf. Anal. 13 (2012) 89 (https://doi.org/10.1002/cphc.201100733)
A. Govender, D. C. Ferre, J. W. Niemantsverdriet, Chem. Phys. Chem. 13 (2012) 1591 (https://doi.org/10.1002/cphc.201100733)
V. A. Ranea, T. J. Strathmann, J. R. Shapley, W. F. Schneider, Phys. Chem. 3 (2011) 898 (https://doi.org/10.1002/cctc.201000398)
R. Q. Liu, Comput. Theor. Chem. 1019 (2013) 141 (https://doi.org/10.1016/j.comptc.2013.07.009)
X. Wang, P. Qian. K. H. Song, C. Zhang, J. Dong. Comput. Theor. Chem. 1025 (2013) 16 (https://doi.org/10.1016/j.comptc.2013.09.025)
M. Rouhani. B, Al, Ga, Si and Ge doped graphene, J. Mol. Struct. 1181 (2019) 518 (https://doi.org/10.1016/j.molstruc.2019.01.006)
N. Yildirim, N. Demir, G. Alpaslan, B. Boyacioglu, M. Yildiz, H. Unver, J Serb. Chem. Soc. 83 (2018) 6 (https://doi.org/10.2298/JSC171001009Y)
J. Z. Yu, F. Q. Zhao, S. Y. Xu, X. H. Ju, J. Serb. Chem. Soc. 82 (2017) 163 (https://doi.org/10.2298/JSC160331084Y)
M. Rafique, Y. S. M. Hassana, J. Mol. Struct. 1142 (2017) 11 (https://doi.org/10.1016/j.molstruc.2017.04.045)
E. Escamilla-Roa, V. Timón, A. Hernández-Laguna, J. Mol. Struct. 981 (2012) 59 (https://doi.org/10.1016/j.comptc.2011.11.046)
C. J. Pickard, M. C. Payne, Phys. Rev., B 62 (2000) 4383 (https://doi.org/10.1103/PhysRevB.62.4383)
J. P. Perdew, W. Yue, Phys. Rev., B 33 (1986) 8800 (https://doi.org/10.1103/PhysRevB.33.8800)
M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, S. Botti, Phys. Rev., B 83 (2011) 035119 (https://doi.org/10.1103/PhysRevB.83.035119)
A. Mokhtari, A. Ribeiro, IEEE Trans. Signal Process. 62 (2014) 6089 (https://doi.org/10.1109/TSP.2014.2357775)
C. C. Ye, F. Q. Zhao, S. Y. Xu, X. H. Ju, J. Mol. Model. 19 (2013) 4459 (https://doi.org/10.1007/s00894-013-1942-5)
C.C. Ye, Q. An, S.Y. Xu, X.H. Ju. Surface Interf. Anal. 49 (2017) 441 (https://doi.org/10.1002/sia.6177)
D. Shahabi, H. Tavakol, Comput. Theor. Chem. 1127 (2018) 8 (https://doi.org/10.1016/j.comptc.2018.02.001).