Decomposition mechanism of dihydroxylammonium 5,5'-bis(tetrazole)-1,1'-diolate on Al(111) surface by periodic DFT calculation

Ying Zhao, Xiaoling Xing, Shengxiang Zhao, Xuehai Ju

Abstract


The generalized gradient approximation (GGA) of density function theory (DFT) methods are employed to investigate the decomposition of TKX-50 molecule on the Al(111) surface. The calculation employs an Al supercell slab model and periodic boundary conditions. Five kinds of adsorption configurations for TKX-50 on Al surface are studied. The TKX-50 is adsorbed on Al surface to form the N-Al, O-Al and OH-Al bonds. The adsorption energies are in range of −113.15 to −1334.40 kJ/mol. The activation energies of all configurations are in range of 100.34-354.10 kJ/mol. The N1-N2 ruptures in V1 and N2-N3 ruptures in V2 are easy to occur. The activation energies (100.34, 108.06 kJ/mol) of these two bonds rupture are less than that of pure TKX-50 (161.58, 215.99 kJ/mol). Al atoms promote the breaking of the tetrazole ring of TKX-50. The quantities of electron transfer from Al atoms to TKX-50 are in range of 1.42-4.90 e.


Keywords


TKX-50; adsorption; transient states; activation energy; charge transfer

Full Text:

PDF (1,294 kB)

References


M. Celina, L. Minier, R. Assink. Thermochim. Acta. 384 (2002) 343. (https://doi.org/10.1016/S0040-6031(01)00793-6)

M. Gaurav, P. A. Ramakrishna. Combust. Flame. 166 (2016) 203. (https://doi.org/10.1016/j.combustflame.2016.01.019)

A. Dokhan, E. W. Price, J. M. Seitzman, R. K. Sigman. Proc. Combust. Inst. 29 (2002) 2939. (https://doi.org/10.1016/S1540-7489(02)80359-5)

S. Verma, P. A. Ramakrishna. J. Propul. Power. 29 (2013) 1200. (https://doi.org/10.2514/1.B34772)

N. Fischer, D. Fischer, T. M. Klapotke, D. G. Piercey, J. Stierstorfer. J. Mater. Chem. 22 (2012) 20418. (https://doi.org/10.1039/c2jm33646d)

H. F. Huang, Y. M. Shi, J. Yang. J. Therm. Anal. Calorim. 121 (2015) 705. (https://doi.org/10.1007/s10973-015-4472-9)

Q. An, W. G. Liu, W. A. Goddard, T. Cheng, S. V. Zybin, H. Xiao. J. Phys. Chem. C. 118 (2014) 27175. (https://doi.org/10.1021/jp509582x)

B. Yuan, Z. J. Yu, E. R. Bernstein. J. Phys. Chem. A. 142 (2015) 10247. (https://doi.org/10.1063/1.4916111)

J. F. Wang, S. S. Chen, S. H. Jin, R. Shi, Z. F. Yu, Q. Su, X. Ma, C. Y. Zhang, Q. H. Shu. J. Therm. Anal. Calorim. 134 (2018) 2049. (https://doi.org/10.1007/s10973-018-7820-8)

S. Q. Zhou, Y. Y. Wu, S. Y. Xu, F. Q. Zhao, X. H. Ju. Can. J. Chem. 84 (2000) 705. (https://doi.org/10.1139/cjc-2015-0278)

J. X. Guo, L. Guan, F. Bian, Q. X. Zhao, Y. L. Wang, B. T. Liu. Surf. Interface. Anal. 43 (2011) 940. (https://doi.org/10.1002/sia.3665)

Acceryls Inc. Material Studio 7.0. Acceryls Inc, San Diego. 2013.

M. R. Elahifard, M. P. Jigato, J. W. Niemantsverdriet. Surf. Interface. Anal. 13 (2012) 89. (https://doi.org/10.1002/cphc.201100733)

A. Govender, D. C. Ferre, J. W. Niemantsverdriet. Chem. Phys. Chem. 13 (2012) 1591. (https://doi.org/10.1002/cphc.201100733)

V. A. Ranea, T. J. Strathmann, J. R. Shapley, W. F. Schneider. Phys. Chem. 3 (2011) 898. (https://doi.org/10.1002/cctc.201000398)

R. Q. Liu. Comput. Theor. Chem. 1019 (2013) 141 (https://doi.org/10.1016/j.comptc.2013.07.009)

X. Wang, P. Qian. K. H. Song, C. Zhang, J. Dong. Comput. Theor. Chem. 1025 (2013) 16. (https://doi.org/10.1016/j.comptc.2013.09.025)

M. Rouhani. B, Al, Ga, Si and Ge doped graphene, J. Mol. Struct. 1181 (2019) 518-535. (https://doi.org/10.1016/j.molstruc.2019.01.006)

N. Yildirim, N. Demir, G. Alpaslan, B. Boyacioglu, M. Yildiz, H. Unver. J Serb. Chem. Soc. 83 (2018) 6. (https://doi.org/10.2298/JSC171001009Y)

J. Z. Yu, F. Q. Zhao, S. Y. Xu, X. H. Ju. J. Serb. Chem. Soc. 82 (2017) 163. (https://doi.org/10.2298/JSC160331084Y)

M. Rafique, Y. S. M. Hassana. J. Mol. Struct. 1142 (2017) 11. (https://doi.org/10.1016/j.molstruc.2017.04.045)

E. Escamilla-Roa, V. Timón, A. Hernández-Laguna. J. Mol. Struct. 981 (2012) 59. (https://doi.org/10.1016/j.comptc.2011.11.046)

C. J. Pickard, M. C. Payne. Phys. Rev. B. 62 (2000) 4383. (https://doi.org/10.1103/PhysRevB.62.4383)

J. P. Perdew, W. Yue. Phys. Rev. B. 33 (1986) 8800. (https://doi.org/10.1103/PhysRevB.33.8800)

M. A. L Marques, J. Vidal, M. J. T. Oliveira, L. Reining, S. Botti. Phys. Rev. B. 83 (2011) 035119. (https://doi.org/10.1103/PhysRevB.83.035119)

A. Mokhtari, A. Ribeiro. IEEE. Trans. Signal. Process. 62 (2014) 6089. (https://doi.org/10.1109/TSP.2014.2357775)

C. C. Ye, F. Q. Zhao, S. Y. Xu, X. H. Ju. J. Mol. Model. 19 (2013) 4459. (https://doi.org/10.1007/s00894-013-1942-5)

C.C. Ye, Q. An, S.Y. Xu, X.H. Ju. Surf. Interface. Anal. 49 (2017) 441. (https://doi.org/10.1002/sia.6177)

D. Shahabi, H. Tavakol. Comput. Theor. Chem. 1127 (2018) 8. (https://doi.org/10.1016/j.comptc.2018.02.001)




DOI: https://doi.org/10.2298/JSC190828127Z

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)