Arsenic removal from water using a one-pot synthesized low-cost mesoporous Fe–Mn-modified biosorbent
Main Article Content
Abstract
This paper investigates the removal of arsenic from water using an environmentally friendly modified biosorbent, chitosan coated with Fe–Mn binary oxide (Chit-FeMn), simply prepared with an one-pot low-cost procedure by simultaneous oxidation and coprecipitation. The sorbent was characterized by SEM, EDS, XRD, FTIR, BET specific surface area, and point of zero charge (pHpzc) measurements. The kinetic data fitted a pseudo-second order model for both As(III) and As(V), suggesting chemical adsorption on the sorbent surface and that intra-particle diffusion is not the only rate-limiting step during adsorption. The adsorption isotherms were best fit to the Freundlich model, and the non-monolayer adsorption model for arsenic on Chit-FeMn is therefore proposed. Below pH 9, the effect of pH on As(III) and As(V) removal by Chit-FeMn was insignificant, with As removals remaining above 85 %. Cl- and NO3- had negligible influences on As(III) and As(V) removal, whereas PO43-, SiO32-, CO32- and SO42- were observed to compete with arsenic species for adsorption sites. The adsorbent was successfully applied to remove arsenic from real arsenic contaminated groundwater samples to below 10 µg L-1 suggesting that Chit-FeMn is a promising candidate for the low cost removal of both As(V) and As(III) during drinking water treatment.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
D. Jovanovic, B. Jakovljevic, Z. Rasic-Milutinovic, K. Paunovic, G. Pekovic, T. Knezevic, Environ. Res. 111 (2011) 315 (https://doi.org/10.1016/j.envres.2010.11.014)
World Health Organisation (WHO), Guidelines for drinking-water quality, 4th ed., 2011
S. Shankar, U. Shanker, Shikha, Sci World J. 2014 (2014) 1 (http://dx.doi.org/10.1155/2014/304524
N. N. Nicomel, K. Leus, K. Folens, P. V. De Voort, G. D. Laing, Int. J. Environ. Res. Public Health 13 (2016) 1 (https://doi.org/10.3390/ijerph13010062)
S. I. Siddiqui, S. A Chaudhry, Process Saf. Environ. Prot. 111 (2017) 592 (https://doi.org/10.1016/j.psep.2017.08.009)
L. Yu, X. Peng, F. Ni, J. Li, D. Wang, Z. Luan, J. Hazard. Mater. 246 (2013) 10 (https://doi.org/10.1016/j.jhazmat.2012.12.007)
G. Zhang, Z. Ren, X. Zhang, J. Chen. Water Res. 47 (2013) 4022 (https://doi.org/10.1016/j.watres.2012.11.059)
S.. Chaudhry, Z. Zaidi, S. I. Siddiqui, J. Mol. Liq. 229 (2017) 230 (https://doi.org/10.1016/j.molliq.2016.12.048)
Z. Jin, L. Zimo, L. Yu, F. Ruiqi, A. B. Shams, X. Xinhua, RSC Adv. 5 (2015) 67951 (https://doi.org/10.1039/C5RA11601E)
J. Nikić, J. Agbaba, M. Watson, S. Maletić, J. Molnar, B. Dalmacija, Water Sci. Technol.: Water Supply 16 (2016) 992 (https://doi.org/10.2166/ws.2016.015)
Y. Xiong, Q. Tong, W. Shan, Z. Xing, Y. Wang, S. Wen, Z. Lou, App. Surf. Sci. 416 (2017) 618 (https://doi.org/10.1016/j.apsusc.2017.04.145)
F. Chang J. Qu, H. Liu, R. Liu, X. Zhao, J. Colloid Interface Sci. 338 (2009) 353 (https://doi.org/10.1016/j.jcis.2009.06.049)
X. Li, K. He, B. Pan, S. Zhang, L. Lu, W. Zhang, Chem. Eng. J. 193-194 (2012) 131 (http://dx.doi.org/10.1016/j.cej.2012.04.036)
S. R. Ryu, E. K. Jeon, J. S. Yang, K. Baek, J. Taiwan Inst. Chem. Eng. 72 (2017) 62 (http://dx.doi.org/10.1016/j.jtice.2017.01.004)
G.S Zhang, J.H. Qu, H.J. Liu, R.P. Liu, R.C. Wu, Water Res. 41 (2007) 1921 (https://doi.org/10.1016/j.watres.2007.02.009)
G. Zhang, H. Liu, J. Qu, W. Jefferson, J. Colloid Interface Sci. 366 (2012) 141 (https://doi.org/10.1016/j.jcis.2011.09.058)
US Environmental Protection Agency (USEPA), Method 7010 Graphite Furnace Atomic Absorption Spectrophotometry, Revision 0, 2007
US Environmental Protection Agency (USEPA), Method 7000B Flame Atomic Absorption Spectrophotometry, Revision 2, 2007
SRPS ISO 8245, Guidelines for determination of total organic carbon (TOC) and dissolved organic carbon (DOC) in water, 2007
A. Gupta, V. S Chauhan, P. N. Sankararamakrishnan, Water Res. 43 (2009) 3862 (https://doi.org/10.1016/j.watres.2009.05.040)
A. Gupta, N. Sankararamakrishnan, Biores. Technol. 101 (2010) 2173 (https://doi.org/10.1016/j.biortech.2009.11.027)
K. S. W. Sing, D. H. Evertt, R. A. W. Haul, L. R. A. Moscou, J. Pierotti, T. Rouquerol T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603 (http://dx.doi.org/10.1351/pac198557040603)
B. Liu, X. Lv, D. Wang, Y. Xu, L. Zhang, Y. Li, J. Appl. Polym. Sci. 125 (2012) 246 (https://doi.org/10.1002/app.35528)
J.O.M. Neto, C.J. Bellato, J.L. Milagres, K.D. Pessoa, E.S. Alvarenga, Water Braz. Chem. Soc. 24 (2013) 121 (http://dx.doi.org/10.1590/S0103-50532013000100017)
L. Largitte, R. Pasquier, Chem. Eng. Res. Des. 109 (2016) 495 (https://doi.org/10.1016/j.cherd.2016.02.006)
N. Ayawei, A. N. Ebelegi, D. Wankasi, J. Chem. 2017 (2017) 1 (https://doi.org/10.1155/2017/3039817)
L. Lin, W. Qiu, D. Wang, Q. Huang, Z. Song, H. W. Chau, Ecotoxicol. Environ. Saf. 144 (2017) 514 (http://dx.doi.org/10.1016/j.ecoenv.2017.06.063)
D. Gang, B. Deng, L. Lin, J. Hazard. Mater. 182 (2010) 156 (https://doi.org/10.1016/j.jhazmat.2010.06.008)
C. Gerente, G. McKay, Y. Andrès, P. Le Cloreic, Adsorption 11 (2005) 859 (https://doi.org/10.1007/s10450-005-6036-y)
M. S Seyed Dorraji, A. Mirmohseni, F. Tasselli, A. Criscuoli, M. Carraro, S. Gross, A. Figoli, J. Polym. Res. 21 (2014) 1 (https://doi.org/10.1007/s10965-014-0399-2)
C. Y. Chen, T. H. Chang, J. T. Kuo, Y. F. Chen, Y. C. Chung, Biores. Technol. 99 (2008) 7487 (https://doi.org/10.1016/j.biortech.2008.02.015)
S. M. Miller, J. B. Zimmerman, Water Res. 44 (2010) 5722 (https://doi.org/10.1016/j.watres.2010.05.045)
D. Ocinski, I. J. Sobala, P. Mazur, J. Raczyk, E. K. Balawejder, Chem. Eng. J. 294 (2016) 210 (http://dx.doi.org/10.1016/j.cej.2016.02.111)
G. S. Zhang, J. H. Qu, H. J. Liu, R. P. Liu, G.T. Li, Environ. Sci. Technol. 41 (2007) 4613 (https://doi.org/10.1021/es063010u)
C. Shan, M. Tong, Water Res. 47 (2013) 3411 (https://doi.org/10.1016/j.watres.2013.03.035)
S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Chem. Eng. J. 158 (2010) 599 (https://doi.org/10.1016/j.cej.2010.02.013)
B. Mandal, S.K. Ray, Mat. Sci. Eng., C 44 (2014) 132 (https://doi.org/10.1016/j.msec.2014.08.021)
S. Kong, Y. Wang, H. Zhan, M. Liu, L. Liang, Q. Hu, J. Geochem. Explor. 144 (2014) 220 (https://doi.org/10.1016/j.gexplo.2014.02.005)
B. An, D. Zhao, J. Hazard. Mater. 211–212 (2012) 332 (https://doi.org/10.1016/j.jhazmat.2011.10.062)
W. Xu, H. Xu, R. Wang, X. Liu, J. Zhao, J. Qu, Chemosphere 83 (2011) 1020 (https://doi.org/10.1016/j.chemosphere.2011.01.066)
S Goldberg, and C. T. Johnston, J. Colloid Interface Sci. 234 (2001) 204 (https://doi.org/10.1006/jcis.2000.7295)
S. M. Maliyekkala, L. Philip, T. Pradeep, Chem. Eng. J. 153 (2009) 101 (https://doi.org/10.1016/j.cej.2009.06.026)
S. Kong, Y. Wang, H. Zhan, S. Yuan, M. Yu, M. Liu, Water Environ. Res. 86 (2014) 147 (https://doi.org/10.2175/106143013X13807328849170).