Arsenic removal from water using a one-pot synthesized low cost mesoporous Fe-Mn modified biosorbent

Jasmina Nikić, Malcolm Watson, Aleksandra Tubić, Marijana Kragulj Isakovski, Snežana Maletić, Emilijan Mohora, Jasmina Agbaba

Abstract


This paper investigates the removal of arsenic from water using an environmentally friendly modified biosorbent, chitosan coated with Fe-Mn binary oxide (Chit-FeMn), simply prepared with a one-pot low-cost procedure by simultaneous oxidation and coprecipitation. The sorbent was characterized by SEM, EDS, XRD, FTIR, BET specific surface area, and point of zero charge (pHpzc) measurements. The kinetic data fitted a pseudo-second order model for both As(III) and As(V), suggesting chemical adsorption on the sorbent surface and that intra-particle diffusion is not the only rate-limiting step during adsorption. The adsorption isotherms were best fit to the Freundlich model, and the non monolayer adsorption model for arsenic on Chit-FeMn is therefore proposed. Below pH 9, the effect of pH on As(III) and As(V) removal by Chit-FeMn was insignificant, with As removals remaining above 85 %. Cl- and NO3- had negligible influences on As(III) and As(V) removal, whereas PO43-, SiO32-, CO32- and SO42- anions were observed to compete with arsenic species for adsorption sites. The adsorbent was successfully applied to remove arsenic from real arsenic contaminated groundwater samples to below 10 µg L-1 suggesting that Chit-FeMn is a promising candidate for the low cost removal of both As(V) and As(III) during drinking water treatment.


Keywords


adsorption; Chitosan; mechanism; competitive ions; groundwater

Full Text:

PDF (2,163 kB)

References


D. Jovanovic, B. Jakovljevic, Z. Rasic-Milutinovic, K. Paunovic, G. Pekovic, T. Knezevic, Environ. Res. 111 (2011) 315 (https://doi.org/10.1016/j.envres.2010.11.014)

World Health Organisation (WHO) Guidelines for drinking-water quality - 4th ed (2011)

S. Shankar, U. Shanker, Shikha. Sci World J. 2014 (2014) 1 (http://dx.doi.org/10.1155/2014/304524

N. N. Nicomel, K. Leus, K. Folens, P. V. De Voort, G. D. Laing, Int. J. Environ. Res. Public Health. 13 (2016) 1 (https://doi.org/10.3390/ijerph13010062)

S. I. Siddiqui, S. A Chaudhry. Process Saf. Environ. Prot. 111 (2017) 592 (https://doi.org/10.1016/j.psep.2017.08.009)

L. Yu, X. Peng, F. Ni, J. Li, D. Wang, Z. Luan. J. Hazard. Mater. 246 (2013) 10 (https://doi.org/10.1016/j.jhazmat.2012.12.007)

G. Zhang, Z. Ren, X. Zhang, J. Chen. Water Res. 47 (2013) 4022 (https://doi.org/10.1016/j.watres.2012.11.059)

S.. Chaudhry, Z. Zaidi, S. I. Siddiqui. J. Mol. Liq. 229 (2017) 230 (https://doi.org/10.1016/j.molliq.2016.12.048)

Z. Jin, L. Zimo, L. Yu, F. Ruiqi, A. B. Shams, X. Xinhua. RSC Adv. 5 (2015) 67951 (https://doi.org/10.1039/C5RA11601E)

J. Nikić, J. Agbaba, M. Watson, S. Maletić, J. Molnar, B. Dalmacija. Water Sci. Technol: Water Supply 16 (2016) 992 (https://doi.org/10.2166/ws.2016.015)

Y. Xiong, Q. Tong, W. Shan, Z. Xing, Y. Wang, S. Wen, Z. Lou. App. Surf. Sci. 416 (2017) 618 (https://doi.org/10.1016/j.apsusc.2017.04.145)

F. Chang J. Qu, H. Liu, R. Liu, X. Zhao. J. Colloid. Interface Sci. 338 (2009) 353 (https://doi.org/10.1016/j.jcis.2009.06.049)

X. Li, K. He, B. Pan, S. Zhang, L. Lu, W. Zhang. Chem. Eng. J. 193-194 (2012) 131 (http://dx.doi.org/10.1016/j.cej.2012.04.036)

S. R. Ryu, E. K. Jeon, J. S. Yang, K. Baek. J. Taiwan Inst. Chem. Eng. 72 (2017) 62 (http://dx.doi.org/10.1016/j.jtice.2017.01.004)

G.S Zhang, J.H. Qu, H.J. Liu, R.P. Liu, R.C. Wu. Water Res. 41 (2007) 1921 (https://doi.org/10.1016/j.watres.2007.02.009)

G. Zhang, H. Liu, J. Qu, W. Jefferson W. J. Colloid. Interface Sci. 366 (2012) 141 (https://doi.org/10.1016/j.jcis.2011.09.058)

US Environmental Protection Agency (USEPA) Method 7010 Graphite Furnace Atomic Absorption Spectrophotometry, Revision 0 (2007)

US Environmental Protection Agency (USEPA): Method 7000B Flame Atomic Absorption Spectrophotometry, Revision 2 (2007)

SRPS ISO 8245: Guidelines for determination of total organic carbon (TOC) and dissolved organic carbon (DOC) in water (2007)

A. Gupta, V. S Chauhan, P. N. Sankararamakrishnan. Water Res. 43 (2009) 3862 (https://doi.org/10.1016/j.watres.2009.05.040)

A. Gupta, N. Sankararamakrishnan. Bioresource Techn. 101 (2010) 2173 (https://doi.org/10.1016/j.biortech.2009.11.027)

K. S. W. Sing, D. H. Evertt, R. A. W. Haul, L. R. A. Moscou, J. Pierotti, T. Rouquerol T. Siemieniewska. Pure Appl. Chem. 57 (1985) 603 (http://dx.doi.org/10.1351/pac198557040603)

B. Liu, X. Lv, D. Wang, Y. Xu, L. Zhang, Y. Li. J. Appl. Polym. Sci. 125 (2012) 246 (https://doi.org/10.1002/app.35528)

J.O.M. Neto, C.J. Bellato, J.L. Milagres, K.D. Pessoa, E.S. Alvarenga. Water Braz. Chem. Soc. 24 (2013) 121 (http://dx.doi.org/10.1590/S0103-50532013000100017)

L. Largitte, R. Pasquier. Chem. Eng. Res. Des. 109 (2016) 495 (https://doi.org/10.1016/j.cherd.2016.02.006)

N. Ayawei, A. N. Ebelegi, D. Wankasi. J. Chem. 2017 (2017) 1 (https://doi.org/10.1155/2017/3039817)

L. Lin, W. Qiu, D. Wang, Q. Huang, Z. Song, H. W. Chau. Ecotox. Environ. Safe. 144 (2017) 514 (http://dx.doi.org/10.1016/j.ecoenv.2017.06.063)

D. Gang, B. Deng, L. Lin. J. Hazard. Mater. 182 (2010) 156 (https://doi.org/10.1016/j.jhazmat.2010.06.008)

C. Gerente, G. McKay, Y. Andrès, P. Le Cloreic. Adsorption 11 (2005) 859 (https://doi.org/10.1007/s10450-005-6036-y)

M. S Seyed Dorraji, A. Mirmohseni, F. Tasselli, A. Criscuoli, M. Carraro, S. Gross, A. Figoli. J. Polym. Res. 21 (2014) 1 (https://doi.org/10.1007/s10965-014-0399-2)

C. Y. Chen, T. H. Chang, J. T. Kuo, Y. F. Chen, Y. C. Chung. Bioresource Techn. 99 (2008) 7487 (https://doi.org/10.1016/j.biortech.2008.02.015)

S. M. Miller, J. B. Zimmerman. Water Res. 44 (2010) 5722 (https://doi.org/10.1016/j.watres.2010.05.045)

D. Ocinski, I. J. Sobala, P. Mazur, J. Raczyk, E. K. Balawejder. Chem. Eng. J. 294 (2016) 210 (http://dx.doi.org/10.1016/j.cej.2016.02.111)

G. S. Zhang, J. H. Qu, H. J. Liu, R. P. Liu, G.T. Li. Environ. Sci. Technol. 41 (2007) 4613 (https://doi.org/10.1021/es063010u)

C. Shan, M. Tong. Water Res. 47 (2013) 3411 (https://doi.org/10.1016/j.watres.2013.03.035)

S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi. Chem. Eng. J. 158 (2010) 599 (https://doi.org/10.1016/j.cej.2010.02.013)

B. Mandal, S.K. Ray. Mat. Sci. Eng. C. 44 (2014) 132(https://doi.org/10.1016/j.msec.2014.08.021)

S. Kong, Y. Wang, H. Zhan, M. Liu, L. Liang, Q. Hu. J. Geochem. Explor. 144 (2014) 220 (https://doi.org/10.1016/j.gexplo.2014.02.005)

B. An, D. Zhao. J. Hazard. Mater. 211–212 (2012) 332 (https://doi.org/10.1016/j.jhazmat.2011.10.062)

W. Xu, H. Xu, R. Wang, X. Liu, J. Zhao, J. Qu. Chemosphere 83 (2011) 1020 (https://doi.org/10.1016/j.chemosphere.2011.01.066)

S Goldberg, and C. T. Johnston. Journal of Colloid and Interface Science 234 (2001) 204 (https://doi.org/10.1006/jcis.2000.7295)

S. M. Maliyekkala, L. Philip, T. Pradeep. Chem. Eng. J. 153 (2009) 101 (https://doi.org/10.1016/j.cej.2009.06.026)

S. Kong, Y. Wang, H. Zhan, S. Yuan, M. Yu, M. Liu. Water Environ. Res. 86 (2014) 147 (https://doi.org/10.2175/106143013X13807328849170)




DOI: https://doi.org/10.2298/JSC180809099N

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)