Influence of water matrix on benzophenone degradation by UV irradiation

Main Article Content

Ivana Ivančev-Tumbas
Minja Bogunović
Marjeta Česen
Aleksandra Tubić
Ester Heath

Abstract

This study presents the results from a bench-scale UV irradiation expe­riment of benzophenone (BP) in different water matrices. Despite the reported resistance of BP to UV-irradiation, it was successfully degraded in solution when intensively irradiated by UV light in a batch reactor for 4 h. In this way, it was possible to remove 56 and 45 % of 1.0 and 10 µg·L-1 of BP in Milli-Q water, respectively. The addition of a mixture of anions suppressed the degradation of BP at the lower concentration level by 20 %. The addition of a dissolved organic carbon (DOC) surrogate mixture (DOC:BP mole ratio of 3000:1) increased the degradation of BP in Milli-Q water (removal 80 %). At 1.0 µg·L-1 of BP and 1.0 mg·L-1 of DOC, removal was 70 %, while at 10 µg·L-1 of BP and 10 mg·L-1 of DOC, there was no observable difference in removal compared with the removal in Milli-Q water. The results show that both DOC and anions influence the photodeg­radation of BP. Furthermore, it was shown that the removal efficiency depends on the concentration of BP. These findings show the importance of a detailed char­acterisation of the water matrix in studies relating to the removal of micropollutants during UV irradiation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. Ivančev-Tumbas, M. Bogunović, M. Česen, A. Tubić, and E. Heath, “Influence of water matrix on benzophenone degradation by UV irradiation”, J. Serb. Chem. Soc., vol. 84, no. 6, pp. 623–632, Jul. 2019.
Section
Environmental Chemistry

References

K. Kotnik, T. Kosjek, B. Zegura, M. Filipi, E. Heath, Chemosphere 147 (2016) 114 (https://doi.org/10.1016/j.chemosphere.2015.12.068)

A. Careghini, A. Filippo Mastorgio, S. Saponaro, E. Sezenna, Environ. Sci. Pollut. Res. 22 (2015) 5711 (https://doi.org/10.1007/s11356-014-3974-5)

Q. Zhanga, X. Maa, M. Dzakpasua, X. C. Wanga, Ecotoxicol. Environ. Saf. 142 (2017) 338 (http://dx.doi.org/10.1016/j.ecoenv.2017.04.027)

J. Kapelewska, U. Kotowska, J. Karpińska, D. Kowalczuk, A. Arciszewska, A. Świrydo, Microchem J. 137 (2018) 292 (https://doi.org/10.1016/j.microc.2017.11.008)

M. H. Wu, J. Li, G. Xu, L-D. Ma, J-J. Li, J-S. Li, L. Tang, Ecotoxicol. Environ. Saf. 152 (2018) 98 (https://doi.org/10.1016/j.ecoenv.2018.01.036)

Y. Kameda, K. Kimura, M. Miyazaki, Environ. Pollut. 159 (2011) 1570 (https://doi.org/10.1016/j.envpol.2011.02.055)

K. Kotnik, T. Kosjek, U. Krajnc, E Heath, Anal. Bioanal. Chem. 406 (2014) 3179 (https://doi.org/10.1007/s00216-014-7749-0)

G. A. Loraine, M. E. Pettigrove, Environ. Sci. Technol. 40 (2006) 687 (https://doi.org/10.1021/es051380x)

P. E. Stackelberg, E. T. Furlong, M. T. Meyer, S. D. Zaugg, A. K. Henderson, D. B. Reissman, Sci. Total Environ. 329 (2004) 99 (https://doi.org/10.1016/j.scitotenv.2004.03.015)

D. Y. Chen, X. F. Guo, W. Hong, H. S. Zhang. Water. Sci. Technol. 72 (2015) 503 (https://doi.org/10.2166/wst.2015.221)

M. Bogunović, V. Knežević, J. Simeunović, I. Teodorović, I. Ivančev-Tumbas, J. Serb. Chem. Soc. 82 (2017) 1445 (https://doi.org/10.2298/JSC170717105B)

J. Peng, G. Wang, D. Zhang, L. Xianguo, J. Photochem. Photobiol.: Chemistry 326 (2016) 9 (https://doi.org/10.1016/j.jphotochem.2016.04.015)

D. L. Giokas, A. Salvador, A. Chisvert, TrAC – Trends Anal. Chem. 26 (2007) 360 (https://doi.org/10.1016/j.trac.2007.02.012)

A. J. M. Santos, M. S. Miranda, J. C. G. Esteves da Silva, Water Res. 46 (2012) 3167 (https://doi.org/10.1016/j.watres.2012.03.057)

D. L. Giokas, A. G. Vlessidis, Talanta 71 (2007) 288 (https://doi.org/10.1016/j.talanta.2006.03.060)

S. Canonica, L. Meunier, U. von Gunten, Water Res. 42 (2008) 121 (https://doi.org/10.1016/j.watres.2007.07.026)

F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Water Res. 43 (2009) 1766 (https://doi.org/10.1016/j.watres.2009.01.008)

Y. Li, X. Qiao , C. Zhou, Y. Zhang, Z. Fu, J. Chen, Chemosphere 153 (2016) 494 (https://doi.org/10.1016/j.chemosphere.2016.03.080)

M. C. Semones, C. M. Sharpless, A. A. MacKay, Y. Chin, Appl. Geochem. 83 (2017) 150 (https://doi.org/10.1016/j.apgeochem.2017.02.008)

T. Bond, E.H Goslan, B. Jefferson, F. Roddick, L. Fan, S.A. Parsons, Water Res. 43 (2009) 2615 (https://doi.org/10.1016/j.watres.2009.03.036)

O. Autin, J. Hart, P. Jarvis, J. MacAdam, S.A. Parsons, B. Jefferson, Appl. Catal., B: Environ. 138–139 (2013) 268 (https://doi.org/10.1016/j.apcatb.2013.02.045)

S. Chen, M. Z. Hoffman, G. H. Parsons, J. Phys. Chem. 79 (1975) 1911 (https://doi.org/10.1021/j100585a004).

Most read articles by the same author(s)