Hydrothermal treatment of sugars to obtain high-value products

Tanja Gagić, Amra Perva-Uzunalić, Željko Knez, Mojca Škerget

Abstract


In present work, the degradation of different sugars, such as lactose, cellobiose, sucrose, galactose, glucose, fructose and xylose, was performed in batch reactor with subcritical water at temperature of 250 oC and reaction time of 1, 5 and 15 min. The yields of water-soluble phase, acetone-soluble phase, solid residue and gases were calculated. The influence of reaction time and difference in sugar structure on the yield of phases and conversion of sugars was studied. Sugars with keto- and furanose structures were less stable than aldo- and pyranose-sugars. The most stable sugars were aldo-hexoses (galactose and glucose). The water-soluble fraction, which is composed of sugars and their deri­vatives, was analyzed by HPLC using RI and UV detectors. The detected degra­dation products by HPLC were: 5-hydroxymethylfurfural (5-HMF), furfural, ery­throse, sorbitol, 1,6-anhydroglucose, glycolaldehyde, glycerl­alde­hy­de, 1,3-di­hy­droxyacetone, pyruvaldehyde, formic, levulinic, lactic, oxalic and succinic acids.


Keywords


green technology; subcritical water; glycosidic bonds; sugar degra¬dation products

Full Text:

PDF (1,771 kB)

References


M. Ravber, Ž. Knez, M. Škerget, Food Chem. 166 (2015) 316 (http://dx.doi.org/10.1016/j.foodchem.2014.06.025)

A. Kruse, E. Dinjus, J. Supercrit. Fluids 39 (2007) 362 (http://dx.doi.org/10.1016/j.supflu.2006.03.016)

I. Pavlovič, Ž. Knez, M. Škerget, Chem. Biochem. Eng. Q. 27 (2013) 73 (https://doi.org/10.15255/CABEQ.2014.99)

H. Weingärtner, E. U. Franck, Angew. Chemie - Int. Ed. 44 (2005) 2672 (http://dx.doi.org/10.1002/anie.200462468)

K. Kohli, R. Prajapati, B. K. Sharma, Energies 12 (2019) 233 (http://dx.doi.org/10.3390/en12020233)

M. Herrero, A. Cifuentes, E. Ibañez, Food Chem. 98 (2006) 136 (http://dx.doi.org/10.1016/j.foodchem.2005.05.058)

D. Klein-Marcuschamer, P. Oleskowicz-Popiel, B. A. Simmons, H. W. Blanch, Biotechnol. Bioeng. 109 (2012) 1083 (http://dx.doi.org/10.1002/bit.24370)

M. Möller, P. Nilges, F. Harnisch, U. Schröder, ChemSusChem 4 (2011) 566 (http://dx.doi.org/10.1002/cssc.201000341)

D. Knežević, W. P. M. Van Swaaij, S. R. A. Kersten, Ind. Eng. Chem. Res. 48 (2009) 4731 (http://dx.doi.org/10.1021/ie801387v)

X. Cao, X. Peng, S. Sun, L. Zhong, W. Chen, S. Wang, R. C. Sun, Carbohydr. Polym. 118 (2015) 44 (http://dx.doi.org/10.1016/j.carbpol.2014.10.069)

C. Promdej, Y. Matsumura, Ind. Eng. Chem. Res. 50 (2011) 8492 (http://dx.doi.org/10.1021/ie200298c)

D. Klingler, H. Vogel, J. Supercrit. Fluids 55 (2010) 259 (http://dx.doi.org/10.1016/j.supflu.2010.06.004)

Q. Jing, X. Lü, Chinese J. Chem. Eng. 16 (2008) 890 (http://dx.doi.org/10.1016/S1004-9541(09)60012-4)

T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, M. Goto, Chem. Eng. Technol. 32 (2009) 527 (http://dx.doi.org/10.1002/ceat.200800537)

S. H. Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, J. Food Eng. 68 (2005) 309 (http://dx.doi.org/10.1016/j.jfoodeng.2004.06.004)

X. Lü, S. Saka, J. Supercrit. Fluids 61 (2012) 146 (http://dx.doi.org/10.1016/j.supflu.2011.09.005)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 38 (1999) 2888 (http://dx.doi.org/10.1021/ie9806390)

F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 45 (2006) 2163 (http://dx.doi.org/10.1021/ie051088y)

F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 46 (2007) 7703 (http://dx.doi.org/10.1021/ie061673e)

D. A. Cantero, L. Vaquerizo, C. Martinez, M. D. Bermejo, M. J. Cocero, Catal. Today 255 (2015) 80 (http://dx.doi.org/10.1016/j.cattod.2014.11.013)

T. Oomori, S. H. Khajavi, Y. Kimura, S. Adachi, R. Matsuno, Biochem. Eng. J. 18 (2004) 143 (http://dx.doi.org/10.1016/j.bej.2003.08.002)

Y. Yu, Z. M. Shafie, H. Wu, Ind. Eng. Chem. Res. 52 (2013) 17006 (http://dx.doi.org/10.1021/ie403140q)

M. Sasaki, M. Furukawa, K. Minami, T. Adschiri, K. Arai, Ind. Eng. Chem. Res. 41 (2002) 6642 (http://dx.doi.org/10.1021/ie020326b)

B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 37 (1998) 357 (http://dx.doi.org/10.1021/ie9704408)

N. Soisangwan, D. M. Gao, T. Kobayashi, P. Khuwijitjaru, S. Adachi, J. Food Process Eng. 40 (2017) 12413 (http://dx.doi.org/10.1111/jfpe.12413)

M. D. A. Saldaña, V. H. Alvarez, A. Haldar, J. Chem. Thermodyn. 55 (2012) 115 (http://dx.doi.org/10.1016/j.jct.2012.06.016)

S. Haghighat Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, LWT - Food Sci. Technol. 38 (2005) 297 (http://dx.doi.org/10.1016/j.lwt.2004.06.005)

J. Ohshima, S. Haghighat Khajavi, Y. Kimura, S. Adachi, Eur. Food Res. Technol. 227 (2008) 799 (http://dx.doi.org/10.1007/s00217-007-0788-4)

D. Gao, T. Kobayashi, S. Adachi, J. Appl. Glycosci. 61 (2014) 9 (http://dx.doi.org/10.5458/jag.jag.JAG-2013_006)

N. Paksung, Y. Matsumura, Ind. Eng. Chem. Res. 54 (2015) 7604 (http://dx.doi.org/10.1021/acs.iecr.5b01623)

C. Usuki, Y. Kimura, S. Adachi, Chem. Eng. Technol. 31 (2008) 133 (http://dx.doi.org/10.1002/ceat.200700391)

T. M. Aida, N. Shiraishi, M. Kubo, M. Watanabe, R. L. Smith, J. Supercrit. Fluids 55 (2010) 208 (http://dx.doi.org/10.1016/j.supflu.2010.08.013)

Q. Jing, X. Lü, Chinese J. Chem. Eng. 15 (2007) 666 (https://doi.org/10.1016/S1004-9541(07)60143-8)

M. Möller, U. Schröder, RSC Adv. 3 (2013) 22253 (http://dx.doi.org/10.1039/c3ra43108h)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, H. Ohzeki, Ind. Eng. Chem. Res. 36 (1997) 5063 (http://dx.doi.org/10.1021/ie9704354)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 1552 (http://dx.doi.org/10.1021/ie960250h)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 2025 (http://dx.doi.org/10.1021/ie960747r)

G. Bonn, H. Binder, H. Leonhard, O. Bobleter, Monatshefte Für Chemie Chem. Mon. 116 (1985) 961 (http://dx.doi.org/10.1007/BF00809189)

P. J. Oefner, A. H. Lanziner, G. Bonn, O. Bobleter, Monatshefte Für Chemie Chem. Mon. 123 (1992) 547 (http://dx.doi.org/10.1007/BF00816848)

A. K. Goodwin, G. L. Rorrer, Chem. Eng. J. 163 (2010) 10 (http://dx.doi.org/10.1016/j.cej.2010.07.013)

I. G. Lee, M. S. Kim, S. K. Ihm, Ind. Eng. Chem. Res. 41 (2002) 1182 (http://dx.doi.org/10.1021/ie010066i)

L. Ferreira-Pinto, A. C. Feirhrmann, M. L. Corazza, N. R. C. Fernandes-Machado, J. S. Dos Reis Coimbra, M. D. A. Saldaña, L. Cardozo-Filho, Int. J. Hydrogen Energy 40 (2015) 12162 (http://dx.doi.org/10.1016/j.ijhydene.2015.07.092)

T. Gagić, A. Perva-Uzunalić, Ž. Knez, M. Škerget, Ind. Eng. Chem. Res. 57 (2018) 6576 (http://dx.doi.org/10.1021/acs.iecr.8b00332)

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem. 28 (1956) 350 (http://dx.doi.org/10.1021/ac60111a017).




DOI: https://doi.org/10.2298/JSC181218070G

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)