Hydrothermal treatment of sugars to obtain high-value products

Main Article Content

Tanja Gagić
https://orcid.org/0000-0003-0331-3531
Amra Perva-Uzunalić
Željko Knez
Mojca Škerget

Abstract

In the present work, the degradation of different sugars, such as lac­tose, cellobiose, sucrose, galactose, glucose, fructose and xylose, was per­formed in batch reactor with subcritical water at temperature of 250 °C and reaction time of 1, 5 and 15 min. The yields of water-soluble phase, acetone-soluble phase, solid residue and gases were determined. The influence of react­ion time and difference in sugar structure on the yield of phases and conversion of sugars was studied. Sugars with keto- and furanose structures were less stable than aldo- and pyranose-sugars. The most stable sugars were aldo-hex­oses (galactose and glucose). The water-soluble fraction, which is composed of sugars and their deri­vatives, was analyzed by HPLC using RI and UV det­ectors. The detected degra­dation products by HPLC were: 5-hydroxymethyl­furfural (5-HMF), furfural, ery­throse, sorbitol, 1,6-anhydroglucose, glycolal­dehyde, glycerl­alde­hy­de, 1,3-di­hy­droxyacetone, pyruvaldehyde, formic, levuli­nic, lactic, oxalic and succinic acids.

Downloads

Metrics

PDF views
333
Feb 13 '20Feb 16 '20Feb 19 '20Feb 22 '20Feb 25 '20Feb 28 '20Mar 01 '20Mar 04 '20Mar 07 '20Mar 10 '20Mar 13 '202.0
| |

Article Details

How to Cite
[1]
T. Gagić, A. Perva-Uzunalić, Željko Knez, and M. Škerget, “Hydrothermal treatment of sugars to obtain high-value products”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 97–109, Feb. 2020.
Section
Chemical Engineering

References

M. Ravber, Ž. Knez, M. Škerget, Food Chem. 166 (2015) 316 (http://dx.doi.org/10.1016/j.foodchem.2014.06.025)

A. Kruse, E. Dinjus, J. Supercrit. Fluids 39 (2007) 362 (http://dx.doi.org/10.1016/j.supflu.2006.03.016)

I. Pavlovič, Ž. Knez, M. Škerget, Chem. Biochem. Eng. Q. 27 (2013) 73 (https://doi.org/10.15255/CABEQ.2014.99)

H. Weingärtner, E. U. Franck, Angew. Chemie Int. Ed. 44 (2005) 2672 (http://dx.doi.org/10.1002/anie.200462468)

K. Kohli, R. Prajapati, B. K. Sharma, Energies 12 (2019) 233 (http://dx.doi.org/10.3390/en12020233)

M. Herrero, A. Cifuentes, E. Ibañez, Food Chem. 98 (2006) 136 (http://dx.doi.org/10.1016/j.foodchem.2005.05.058)

D. Klein-Marcuschamer, P. Oleskowicz-Popiel, B. A. Simmons, H. W. Blanch, Biotechnol. Bioeng. 109 (2012) 1083 (http://dx.doi.org/10.1002/bit.24370)

M. Möller, P. Nilges, F. Harnisch, U. Schröder, ChemSusChem 4 (2011) 566 (http://dx.doi.org/10.1002/cssc.201000341)

D. Knežević, W. P. M. Van Swaaij, S. R. A. Kersten, Ind. Eng. Chem. Res. 48 (2009) 4731 (http://dx.doi.org/10.1021/ie801387v)

X. Cao, X. Peng, S. Sun, L. Zhong, W. Chen, S. Wang, R. C. Sun, Carbohydr. Polym. 118 (2015) 44 (http://dx.doi.org/10.1016/j.carbpol.2014.10.069)

C. Promdej, Y. Matsumura, Ind. Eng. Chem. Res. 50 (2011) 8492 (http://dx.doi.org/10.1021/ie200298c)

D. Klingler, H. Vogel, J. Supercrit. Fluids 55 (2010) 259 (http://dx.doi.org/10.1016/j.supflu.2010.06.004)

Q. Jing, X. Lü, Chinese J. Chem. Eng. 16 (2008) 890 (http://dx.doi.org/10.1016/S1004-9541(09)60012-4)

T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, M. Goto, Chem. Eng. Technol. 32 (2009) 527 (http://dx.doi.org/10.1002/ceat.200800537)

S. H. Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, J. Food Eng. 68 (2005) 309 (http://dx.doi.org/10.1016/j.jfoodeng.2004.06.004)

X. Lü, S. Saka, J. Supercrit. Fluids 61 (2012) 146 (http://dx.doi.org/10.1016/j.supflu.2011.09.005)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 38 (1999) 2888 (http://dx.doi.org/10.1021/ie9806390)

F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 45 (2006) 2163 (http://dx.doi.org/10.1021/ie051088y)

F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 46 (2007) 7703 (http://dx.doi.org/10.1021/ie061673e)

D. A. Cantero, L. Vaquerizo, C. Martinez, M. D. Bermejo, M. J. Cocero, Catal. Today 255 (2015) 80 (http://dx.doi.org/10.1016/j.cattod.2014.11.013)

T. Oomori, S. H. Khajavi, Y. Kimura, S. Adachi, R. Matsuno, Biochem. Eng. J. 18 (2004) 143 (http://dx.doi.org/10.1016/j.bej.2003.08.002)

Y. Yu, Z. M. Shafie, H. Wu, Ind. Eng. Chem. Res. 52 (2013) 17006 (http://dx.doi.org/10.1021/ie403140q)

M. Sasaki, M. Furukawa, K. Minami, T. Adschiri, K. Arai, Ind. Eng. Chem. Res. 41 (2002) 6642 (http://dx.doi.org/10.1021/ie020326b)

B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 37 (1998) 357 (http://dx.doi.org/10.1021/ie9704408)

N. Soisangwan, D. M. Gao, T. Kobayashi, P. Khuwijitjaru, S. Adachi, J. Food Process Eng. 40 (2017) 12413 (http://dx.doi.org/10.1111/jfpe.12413)

M. D. A. Saldaña, V. H. Alvarez, A. Haldar, J. Chem. Thermodyn. 55 (2012) 115 (http://dx.doi.org/10.1016/j.jct.2012.06.016)

S. Haghighat Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, LWT – Food Sci. Technol. 38 (2005) 297 (http://dx.doi.org/10.1016/j.lwt.2004.06.005)

J. Ohshima, S. Haghighat Khajavi, Y. Kimura, S. Adachi, Eur. Food Res. Technol. 227 (2008) 799 (http://dx.doi.org/10.1007/s00217-007-0788-4)

D. Gao, T. Kobayashi, S. Adachi, J. Appl. Glycosci. 61 (2014) 9 (http://dx.doi.org/10.5458/jag.jag.JAG-2013_006)

N. Paksung, Y. Matsumura, Ind. Eng. Chem. Res. 54 (2015) 7604 (http://dx.doi.org/10.1021/acs.iecr.5b01623)

C. Usuki, Y. Kimura, S. Adachi, Chem. Eng. Technol. 31 (2008) 133 (http://dx.doi.org/10.1002/ceat.200700391)

T. M. Aida, N. Shiraishi, M. Kubo, M. Watanabe, R. L. Smith, J. Supercrit. Fluids 55 (2010) 208 (http://dx.doi.org/10.1016/j.supflu.2010.08.013)

Q. Jing, X. Lü, Chinese J. Chem. Eng. 15 (2007) 666 (https://doi.org/10.1016/S1004-9541(07)60143-8)

M. Möller, U. Schröder, RSC Adv. 3 (2013) 22253 (http://dx.doi.org/10.1039/c3ra43108h)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, H. Ohzeki, Ind. Eng. Chem. Res. 36 (1997) 5063 (http://dx.doi.org/10.1021/ie9704354)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 1552 (http://dx.doi.org/10.1021/ie960250h)

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 2025 (http://dx.doi.org/10.1021/ie960747r)

G. Bonn, H. Binder, H. Leonhard, O. Bobleter, Monatsh. Chem. Chem. Mon. 116 (1985) 961 (http://dx.doi.org/10.1007/BF00809189)

P. J. Oefner, A. H. Lanziner, G. Bonn, O. Bobleter, Monatsh. Chem. Chem. Mon. 123 (1992) 547 (http://dx.doi.org/10.1007/BF00816848)

A. K. Goodwin, G. L. Rorrer, Chem. Eng. J. 163 (2010) 10 (http://dx.doi.org/10.1016/j.cej.2010.07.013)

I. G. Lee, M. S. Kim, S. K. Ihm, Ind. Eng. Chem. Res. 41 (2002) 1182 (http://dx.doi.org/10.1021/ie010066i)

L. Ferreira-Pinto, A. C. Feirhrmann, M. L. Corazza, N. R. C. Fernandes-Machado, J. S. Dos Reis Coimbra, M. D. A. Saldaña, L. Cardozo-Filho, Int. J. Hydrogen Energy 40 (2015) 12162 (http://dx.doi.org/10.1016/j.ijhydene.2015.07.092)

T. Gagić, A. Perva-Uzunalić, Ž. Knez, M. Škerget, Ind. Eng. Chem. Res. 57 (2018) 6576 (http://dx.doi.org/10.1021/acs.iecr.8b00332)

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem. 28 (1956) 350 (http://dx.doi.org/10.1021/ac60111a017).