Hydrothermal treatment of sugars to obtain high-value products
Main Article Content
Abstract
In the present work, the degradation of different sugars, such as lactose, cellobiose, sucrose, galactose, glucose, fructose and xylose, was performed in batch reactor with subcritical water at temperature of 250 °C and reaction time of 1, 5 and 15 min. The yields of water-soluble phase, acetone-soluble phase, solid residue and gases were determined. The influence of reaction time and difference in sugar structure on the yield of phases and conversion of sugars was studied. Sugars with keto- and furanose structures were less stable than aldo- and pyranose-sugars. The most stable sugars were aldo-hexoses (galactose and glucose). The water-soluble fraction, which is composed of sugars and their derivatives, was analyzed by HPLC using RI and UV detectors. The detected degradation products by HPLC were: 5-hydroxymethylfurfural (5-HMF), furfural, erythrose, sorbitol, 1,6-anhydroglucose, glycolaldehyde, glycerlaldehyde, 1,3-dihydroxyacetone, pyruvaldehyde, formic, levulinic, lactic, oxalic and succinic acids.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Ravber, Ž. Knez, M. Škerget, Food Chem. 166 (2015) 316 (http://dx.doi.org/10.1016/j.foodchem.2014.06.025)
A. Kruse, E. Dinjus, J. Supercrit. Fluids 39 (2007) 362 (http://dx.doi.org/10.1016/j.supflu.2006.03.016)
I. Pavlovič, Ž. Knez, M. Škerget, Chem. Biochem. Eng. Q. 27 (2013) 73 (https://doi.org/10.15255/CABEQ.2014.99)
H. Weingärtner, E. U. Franck, Angew. Chemie Int. Ed. 44 (2005) 2672 (http://dx.doi.org/10.1002/anie.200462468)
K. Kohli, R. Prajapati, B. K. Sharma, Energies 12 (2019) 233 (http://dx.doi.org/10.3390/en12020233)
M. Herrero, A. Cifuentes, E. Ibañez, Food Chem. 98 (2006) 136 (http://dx.doi.org/10.1016/j.foodchem.2005.05.058)
D. Klein-Marcuschamer, P. Oleskowicz-Popiel, B. A. Simmons, H. W. Blanch, Biotechnol. Bioeng. 109 (2012) 1083 (http://dx.doi.org/10.1002/bit.24370)
M. Möller, P. Nilges, F. Harnisch, U. Schröder, ChemSusChem 4 (2011) 566 (http://dx.doi.org/10.1002/cssc.201000341)
D. Knežević, W. P. M. Van Swaaij, S. R. A. Kersten, Ind. Eng. Chem. Res. 48 (2009) 4731 (http://dx.doi.org/10.1021/ie801387v)
X. Cao, X. Peng, S. Sun, L. Zhong, W. Chen, S. Wang, R. C. Sun, Carbohydr. Polym. 118 (2015) 44 (http://dx.doi.org/10.1016/j.carbpol.2014.10.069)
C. Promdej, Y. Matsumura, Ind. Eng. Chem. Res. 50 (2011) 8492 (http://dx.doi.org/10.1021/ie200298c)
D. Klingler, H. Vogel, J. Supercrit. Fluids 55 (2010) 259 (http://dx.doi.org/10.1016/j.supflu.2010.06.004)
Q. Jing, X. Lü, Chinese J. Chem. Eng. 16 (2008) 890 (http://dx.doi.org/10.1016/S1004-9541(09)60012-4)
T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, M. Goto, Chem. Eng. Technol. 32 (2009) 527 (http://dx.doi.org/10.1002/ceat.200800537)
S. H. Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, J. Food Eng. 68 (2005) 309 (http://dx.doi.org/10.1016/j.jfoodeng.2004.06.004)
X. Lü, S. Saka, J. Supercrit. Fluids 61 (2012) 146 (http://dx.doi.org/10.1016/j.supflu.2011.09.005)
B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 38 (1999) 2888 (http://dx.doi.org/10.1021/ie9806390)
F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 45 (2006) 2163 (http://dx.doi.org/10.1021/ie051088y)
F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 46 (2007) 7703 (http://dx.doi.org/10.1021/ie061673e)
D. A. Cantero, L. Vaquerizo, C. Martinez, M. D. Bermejo, M. J. Cocero, Catal. Today 255 (2015) 80 (http://dx.doi.org/10.1016/j.cattod.2014.11.013)
T. Oomori, S. H. Khajavi, Y. Kimura, S. Adachi, R. Matsuno, Biochem. Eng. J. 18 (2004) 143 (http://dx.doi.org/10.1016/j.bej.2003.08.002)
Y. Yu, Z. M. Shafie, H. Wu, Ind. Eng. Chem. Res. 52 (2013) 17006 (http://dx.doi.org/10.1021/ie403140q)
M. Sasaki, M. Furukawa, K. Minami, T. Adschiri, K. Arai, Ind. Eng. Chem. Res. 41 (2002) 6642 (http://dx.doi.org/10.1021/ie020326b)
B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 37 (1998) 357 (http://dx.doi.org/10.1021/ie9704408)
N. Soisangwan, D. M. Gao, T. Kobayashi, P. Khuwijitjaru, S. Adachi, J. Food Process Eng. 40 (2017) 12413 (http://dx.doi.org/10.1111/jfpe.12413)
M. D. A. Saldaña, V. H. Alvarez, A. Haldar, J. Chem. Thermodyn. 55 (2012) 115 (http://dx.doi.org/10.1016/j.jct.2012.06.016)
S. Haghighat Khajavi, Y. Kimura, T. Oomori, R. Matsuno, S. Adachi, LWT – Food Sci. Technol. 38 (2005) 297 (http://dx.doi.org/10.1016/j.lwt.2004.06.005)
J. Ohshima, S. Haghighat Khajavi, Y. Kimura, S. Adachi, Eur. Food Res. Technol. 227 (2008) 799 (http://dx.doi.org/10.1007/s00217-007-0788-4)
D. Gao, T. Kobayashi, S. Adachi, J. Appl. Glycosci. 61 (2014) 9 (http://dx.doi.org/10.5458/jag.jag.JAG-2013_006)
N. Paksung, Y. Matsumura, Ind. Eng. Chem. Res. 54 (2015) 7604 (http://dx.doi.org/10.1021/acs.iecr.5b01623)
C. Usuki, Y. Kimura, S. Adachi, Chem. Eng. Technol. 31 (2008) 133 (http://dx.doi.org/10.1002/ceat.200700391)
T. M. Aida, N. Shiraishi, M. Kubo, M. Watanabe, R. L. Smith, J. Supercrit. Fluids 55 (2010) 208 (http://dx.doi.org/10.1016/j.supflu.2010.08.013)
Q. Jing, X. Lü, Chinese J. Chem. Eng. 15 (2007) 666 (https://doi.org/10.1016/S1004-9541(07)60143-8)
M. Möller, U. Schröder, RSC Adv. 3 (2013) 22253 (http://dx.doi.org/10.1039/c3ra43108h)
B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, H. Ohzeki, Ind. Eng. Chem. Res. 36 (1997) 5063 (http://dx.doi.org/10.1021/ie9704354)
B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 1552 (http://dx.doi.org/10.1021/ie960250h)
B. M. Kabyemela, T. Adschiri, R. M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 36 (1997) 2025 (http://dx.doi.org/10.1021/ie960747r)
G. Bonn, H. Binder, H. Leonhard, O. Bobleter, Monatsh. Chem. Chem. Mon. 116 (1985) 961 (http://dx.doi.org/10.1007/BF00809189)
P. J. Oefner, A. H. Lanziner, G. Bonn, O. Bobleter, Monatsh. Chem. Chem. Mon. 123 (1992) 547 (http://dx.doi.org/10.1007/BF00816848)
A. K. Goodwin, G. L. Rorrer, Chem. Eng. J. 163 (2010) 10 (http://dx.doi.org/10.1016/j.cej.2010.07.013)
I. G. Lee, M. S. Kim, S. K. Ihm, Ind. Eng. Chem. Res. 41 (2002) 1182 (http://dx.doi.org/10.1021/ie010066i)
L. Ferreira-Pinto, A. C. Feirhrmann, M. L. Corazza, N. R. C. Fernandes-Machado, J. S. Dos Reis Coimbra, M. D. A. Saldaña, L. Cardozo-Filho, Int. J. Hydrogen Energy 40 (2015) 12162 (http://dx.doi.org/10.1016/j.ijhydene.2015.07.092)
T. Gagić, A. Perva-Uzunalić, Ž. Knez, M. Škerget, Ind. Eng. Chem. Res. 57 (2018) 6576 (http://dx.doi.org/10.1021/acs.iecr.8b00332)
M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, Anal. Chem. 28 (1956) 350 (http://dx.doi.org/10.1021/ac60111a017).