Hydrothermal hydrolysis of sweet chestnut (Castanea sativa) tannins

Tanja Gagić, Željko Knez, Mojca Škerget

Abstract


The sweet chestnut tannins were treated by subcritical water at temperatures from 120 oC to 300 oC and reaction times of 15, 30 and 60 min. The great influence of temperature and reaction time on the product yield was noticed. The spectrophotometric methods were used to determine total tannins, phenols and carbohydrates content and antioxidant activity. Furthermore, the compounds analysed by HPLC were: vescalin, castalin, vescalagin, castalagin, 1-o-galloyl castalagin, gallic, ellagic and ferulic acids. The results obtained from hydrothermal hydrolysis were compared to results from acid hydrolysis. Finally, the optimization of reaction parameters of the hydrothermal hydrolysis process has been done aiming to obtain the product with high concentration of ellagic acid. The optimal conditions for obtaining the highest concentration of ellagic acid of 29.55 % were 250 oC and 5 min. The concentration of ellagic acid in tannin extract obtained by acid hydrolysis was 8.19 %.

Keywords


sweet chestnut; subcritical water; ellagitannins; ellagic acid; gallic acid.

Full Text:

PDF (1,678 kB)

References


K. Voigt, H. Scherb, R. Bruggemann, K. W. Schramm, Sci. Total Environ. 454 (2013) 149 (http://dx.doi.org/10.1016/j.scitotenv.2013.02.098)

M. Epicoco, V. Oltra, M. Saint Jean, Technol. Forecast. Soc. Change 81 (2014) 388 (http://dx.doi.org/10.1016/j.techfore.2013.03.006)

I. Okajima, T. Sako, J. Biosci. Bioeng. 117 (2014) 1 (http://dx.doi.org/10.1016/j.jbiosc.2013.06.010)

N. Simsek Kus, Tetrahedron 68 (2012) 949 (http://dx.doi.org/10.1016/j.tet.2011.10.070)

I. Pavlovič, Ž. Knez, M. Škerget, J. Agric. Food Chem. 61 (2013) 8003 (http://dx.doi.org/10.1021/jf401008a)

A. Shitu, S. Izhar, T. Tahir, Glob. J. Environ. Sci. Manag. 1 (2015) 255 (http://dx.doi.org/10.7508/gjesm.2015.03.008)

N. Akiya, P. E. Savage, Chem. Rev. 102 (2002) 2725 (http://dx.doi.org/10.1021/cr000668w)

M. Ravber, Ž. Knez, M. Škerget, Food Chem. 166 (2015) 316 (http://dx.doi.org/10.1016/j.foodchem.2014.06.025)

G. Vázquez, J. González-Alvarez, J. Santos, M. S. Freire, G. Antorrena, Ind. Crops Prod. 29 (2009) 364 (http://dx.doi.org/10.1016/j.indcrop.2008.07.004)

A. Chiarini, M. Micucci, M. Malaguti, R. Budriesi, P. Ioan, M. Lenzi, C. Fimognari, T. Gallina Toschi, P. Comandini, S. Hrelia, Oxid. Med. Cell. Longev. 2013 (2013) 1 (http://dx.doi.org/10.1155/2013/471790)

K. Khanbabaee, T. van Ree, Nat. Prod. Rep. 18 (2001) 641 (http://dx.doi.org/10.1039/B101061L)

M. Sanz, E. Cadahía, E. Esteruelas, Á. M. Muñoz, B. Fernández De Simón, T. Hernández, I. Estrella, J. Agric. Food Chem. 58 (2010) 9631 (http://dx.doi.org/10.1021/jf102718t)

A. Scalbert, G. Williamson, J. Nutr. 130 (2000) 2073S (http://dx.doi.org/10.1093/jn/130.8.2073S)

K. M. Barry, N. W. Davies, C. L. Mohammed, Phytochem. Anal. 12 (2001) 120 (http://dx.doi.org/10.1002/pca.548)

H. Pasch, A. Pizzi, J. Appl. Polym. Sci. 85 (2002) 429 (http://dx.doi.org/10.1002/app.10618)

I. Mila, A. Scalbert, D. Expert, Phytochemistry 42 (1996) 1551 (http://dx.doi.org/10.1016/0031-9422(96)00174-4)

C. Viriot, A. Scalbert, C. L. M. Hervé du Penhoat, M. Moutounet, Phytochemistry 36 (1994) 1253 (http://dx.doi.org/10.1016/S0031-9422(00)89647-8)

B. Zhang, J. Cai, C. Q. Duan, M. J. Reeves, F. He, Int. J. Mol. Sci. 16 (2015) 6978 (http://dx.doi.org/10.3390/ijms16046978)

B. Badhani, N. Sharma, R. Kakkar, RSC Adv. 5 (2015) 27540 (http://dx.doi.org/10.1039/c5ra01911g)

L. Sepúlveda, A. Ascacio, R. Rodríguez-Herrera, A. Aguilera-Carbó, C. N. Aguilar, African J. Biotechnol. 10 (2011) 4518 (10.5897/AJB10.2201)

T. Gagić, A. Perva-Uzunalić, Ž. Knez, M. Škerget, J. Serbian Chem. Soc. OnLine First - OLF (2019) (http://dx.doi.org/10.2298/JSC181218070G)

P. Comandini, M. J. Lerma-García, E. F. Simó-Alfonso, T. G. Toschi, Food Chem. 157 (2014) 290 (http://dx.doi.org/10.1016/j.foodchem.2014.02.003)

A. Aires, R. Carvalho, M. J. Saavedra, Waste Manag. 48 (2016) 457 (http://dx.doi.org/10.1016/j.wasman.2015.11.019)

G. Vázquez, E. Fontenla, J. Santos, M. S. Freire, J. González-Álvarez, G. Antorrena, Ind. Crops Prod. 28 (2008) 279 (http://dx.doi.org/10.1016/j.indcrop.2008.03.003)

H. Wang, K. Helliwell, Food Res. Int. 34 (2001) 223 (http://dx.doi.org/10.1016/S0963-9969(00)00156-3)

R. F. Helm, L. Zhentian, T. Ranatunga, J. Jervis, T. Elder, Toward Understanding Monomeric Ellagitannin Biosynthesis, in Plant Polyphenols 2, 1999 83 (http://dx.doi.org/10.1007/978-1-4615-4139-4_5)

P. Arapitsas, Food Chem. 135 (2012) 1708 (http://dx.doi.org/10.1016/j.foodchem.2012.05.096)

W. V. Zucker, Am. Nat. 121 (2002) 335 (http://dx.doi.org/10.1086/284065)

S. Canas, M. C. Leandro, M. I. Spranger, A. P. Belchior, J. Agric. Food Chem. 47 (1999) 5023 (http://dx.doi.org/10.1021/jf9900480)

W. Vermerris, R. Nicholson, Families of phenolic compounds and means of classification, in Phenolic Compd. Biochem., 2006 1 (http://dx.doi.org/10.1007/978-1-4020-5164-7_1)

G.-I. Nonaka, K. Ishimaru, M. Watanabe, I. Nishioka, T. Yamauchi, A. S. C. Wan, Chem. Pharm. Bull. (Tokyo). 35 (2011) 217 (http://dx.doi.org/10.1248/cpb.35.217)

E. Haslam, Y. Cai, Nat. Prod. Rep. 11 (1994) 41 (http://dx.doi.org/10.1039/NP9941100041).




DOI: https://doi.org/10.2298/JSC190711108G

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)