Hydrothermal hydrolysis of sweet chestnut (Castanea sativa) tannins

Main Article Content

Tanja Gagić
https://orcid.org/0000-0003-0331-3531
Željko Knez
Mojca Škerget

Abstract

Sweet chestnut tannins were treated with subcritical water at tem­pe­ratures from 120 to 300 °C for reaction times of 15, 30 and 60 min. A great influence of temperature and reaction time on the product yield was noticed. Spectrophotometric methods were used to determine the total tannins, phenols and carbohydrates contents and antioxidant activity. Furthermore, vescalin, castalin, vescalagin, castalagin, 1-O-galloyl castalagin, gallic, ellagic and feru­lic acids were analysed by HPLC. The results obtained from hydrothermal hyd­rolysis were compared to results from acid hydrolysis. Finally, the reaction parameters of the hydrothermal hydrolysis process were optimized aimed at obtaining a product with a high concentration of ellagic acid. The optimal con­ditions for obtaining the highest concentration of ellagic acid of 29.55 % were 250 °C and 5 min. The concentration of ellagic acid in tannin extract obtained by acid hydrolysis was 8.19 %.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
T. Gagić, Željko Knez, and M. Škerget, “Hydrothermal hydrolysis of sweet chestnut (Castanea sativa) tannins”, J. Serb. Chem. Soc., vol. 85, no. 7, pp. 867–881, Jul. 2020.
Section
Biochemistry & Biotechnology

References

K. Voigt, H. Scherb, R. Bruggemann, K. W. Schramm, Sci. Total Environ. 454 (2013) 149 (http://dx.doi.org/10.1016/j.scitotenv.2013.02.098)

M. Epicoco, V. Oltra, M. Saint Jean, Technol. Forecast. Soc. Change 81 (2014) 388 (http://dx.doi.org/10.1016/j.techfore.2013.03.006)

I. Okajima, T. Sako, J. Biosci. Bioeng. 117 (2014) 1 (http://dx.doi.org/10.1016/j.jbiosc.2013.06.010)

N. Simsek Kus, Tetrahedron 68 (2012) 949 (http://dx.doi.org/10.1016/j.tet.2011.10.070)

I. Pavlovič, Ž. Knez, M. Škerget, J. Agric. Food Chem. 61 (2013) 8003 (http://dx.doi.org/10.1021/jf401008a)

A. Shitu, S. Izhar, T. Tahir, Glob. J. Environ. Sci. Manage. 1 (2015) 255 (http://dx.doi.org/10.7508/gjesm.2015.03.008)

N. Akiya, P. E. Savage, Chem. Rev. 102 (2002) 2725 (http://dx.doi.org/10.1021/cr000668w)

M. Ravber, Ž. Knez, M. Škerget, Food Chem. 166 (2015) 316 (http://dx.doi.org/10.1016/j.foodchem.2014.06.025)

G. Vázquez, J. González-Alvarez, J. Santos, M. S. Freire, G. Antorrena, Ind. Crops Prod. 29 (2009) 364 (http://dx.doi.org/10.1016/j.indcrop.2008.07.004)

A. Chiarini, M. Micucci, M. Malaguti, R. Budriesi, P. Ioan, M. Lenzi, C. Fimognari, T. Gallina Toschi, P. Comandini, S. Hrelia, Oxid. Med. Cell. Longev. 2013 (2013) 1 (http://dx.doi.org/10.1155/2013/471790)

K. Khanbabaee, T. van Ree, Nat. Prod. Rep. 18 (2001) 641 (http://dx.doi.org/10.1039/B101061L)

M. Sanz, E. Cadahía, E. Esteruelas, Á. M. Muñoz, B. Fernández De Simón, T. Hernández, I. Estrella, J. Agric. Food Chem. 58 (2010) 9631 (http://dx.doi.org/10.1021/jf102718t)

A. Scalbert, G. Williamson, J. Nutr. 130 (2000) 2073S (http://dx.doi.org/10.1093/jn/130.8.2073S)

K. M. Barry, N. W. Davies, C. L. Mohammed, Phytochem. Anal. 12 (2001) 120 (http://dx.doi.org/10.1002/pca.548)

H. Pasch, A. Pizzi, J. Appl. Polym. Sci. 85 (2002) 429 (http://dx.doi.org/10.1002/app.10618)

I. Mila, A. Scalbert, D. Expert, Phytochemistry 42 (1996) 1551 (http://dx.doi.org/10.1016/0031-9422(96)00174-4)

C. Viriot, A. Scalbert, C. L. M. Hervé du Penhoat, M. Moutounet, Phytochemistry 36 (1994) 1253 (http://dx.doi.org/10.1016/S0031-9422(00)89647-8)

B. Zhang, J. Cai, C. Q. Duan, M. J. Reeves, F. He, Int. J. Mol. Sci. 16 (2015) 6978 (http://dx.doi.org/10.3390/ijms16046978)

B. Badhani, N. Sharma, R. Kakkar, RSC Adv. 5 (2015) 27540 (http://dx.doi.org/10.1039/c5ra01911g)

L. Sepúlveda, A. Ascacio, R. Rodríguez-Herrera, A. Aguilera-Carbó, C. N. Aguilar, Afr. J. Biotechnol. 10 (2011) 4518 (10.5897/AJB10.2201)

T. Gagić, A. Perva-Uzunalić, Ž. Knez, M. Škerget, J. Serb. Chem. Soc. 85 (2020) 97 (http://dx.doi.org/10.2298/JSC181218070G)

P. Comandini, M. J. Lerma-García, E. F. Simó-Alfonso, T. G. Toschi, Food Chem. 157 (2014) 290 (http://dx.doi.org/10.1016/j.foodchem.2014.02.003)

A. Aires, R. Carvalho, M. J. Saavedra, Waste Manage. 48 (2016) 457 (http://dx.doi.org/10.1016/j.wasman.2015.11.019)

G. Vázquez, E. Fontenla, J. Santos, M. S. Freire, J. González-Álvarez, G. Antorrena, Ind. Crops Prod. 28 (2008) 279 (http://dx.doi.org/10.1016/j.indcrop.2008.03.003)

H. Wang, K. Helliwell, Food Res. Int. 34 (2001) 223 (http://dx.doi.org/10.1016/S0963-9969(00)00156-3)

R. F. Helm, L. Zhentian, T. Ranatunga, J. Jervis, T. Elder, in Plant Polyphenols 2, Basic Life Sciences, G. G. Gross, R.W. Hemingway, T. Yoshida, S. J. Branham, Eds., Springer, Boston, MA, 1999, p. 83 (http://dx.doi.org/10.1007/978-1-4615-4139-4_5)

P. Arapitsas, Food Chem. 135 (2012) 1708 (http://dx.doi.org/10.1016/j.foodchem.2012.05.096)

W. V. Zucker, Am. Nat. 121 (2002) 335 (http://dx.doi.org/10.1086/284065)

S. Canas, M. C. Leandro, M. I. Spranger, A. P. Belchior, J. Agric. Food Chem. 47 (1999) 5023 (http://dx.doi.org/10.1021/jf9900480)

W. Vermerris, R. Nicholson, Families of phenolic compounds and means of classification, in Phenolic Compd. Biochem., Springer, Dordrecht, 2006, p. 1 (http://dx.doi.org/10.1007/978-1-4020-5164-7_1)

G.-I. Nonaka, K. Ishimaru, M. Watanabe, I. Nishioka, T. Yamauchi, A. S. C. Wan, Chem. Pharm. Bull. (Tokyo) 35 (2011) 217 (http://dx.doi.org/10.1248/cpb.35.217)

E. Haslam, Y. Cai, Nat. Prod. Rep. 11 (1994) 41 (http://dx.doi.org/10.1039/NP9941100041).