Oxovanadium(IV) complexes of the pyridoxal Schiff bases: Synthesis, experimental and theoretical characterizations, QTAIM analysis and antioxidant activity

Parisa Ghorbani, S. Ali Beyramabadi, Masoud Homayouni-Tabrizi, Parichehreh Yaghmaei

Abstract


Two vanadyl complexes of the pyridoxal Schiff bases have been newly synthesized and characterized by several experimental methods, where the 4,4¢-[1,4-butanediylbis-[(E)-nitrilomethylidyne])bis[5-hydroxy-6-methyl-3-pyridinemethanol] and trans-4,4¢-[1,2-cyclohexanediylbis-[(E)-nitrilo-meth­ylidyne]]bis[5-hydroxy-6-methyl-3-pyridinemethanol] Schiff base were used. Geometry optimization, assignment of the IR vibrational frequencies and the natural bond orbital (NBO) analysis of the complexes have been calculated by employing the density functional theory (DFT) approaches. Deprotonated form of the Schiff bases (L2-) acts as a tetra­dentate N2O2 ligand, which coordinates to the V(IV) via two phenolate oxy­gens and two imine nitrogens. In the square–pyramidal geometry of the [VO(L)], the apical position is occupied by an oxo ligand. The DFT-calculated vibrational frequencies show a good con­sistency with the corresponding expe­rimental values, confirming suitability of the optimized geometries for the complexes. Characteristics of the bonding interactions have been explored using the quantum theory of atoms in molecule (QTAIM) analysis. The com­plex formation results in decrease in strength of the C–N bond of the azo­methine group and increase in the strength of the C–O bonds of the phenolate group. High-energy gaps approve stability of the com­plexes. Both of the com­plexes show significant radical scavenging activities against the ABTS and DPPH radicals, even higher than the BHA.


Keywords


analysis. The com¬plex formation results in decrease in strength of the C–N bond of the azo¬methine group and increase in the strength of the C–O bonds of the phenolate group. High-energy gaps approve stability of the com¬plexes. Both of the complexes sh

References


S. Saha, A. Das, K. Acharjee, B. Sinha, J. Serb. Chem. Soc. 81 (2016) 9 (http://doi.org/10.2298/jsc160425065s)

E. G. Bakirdere, M. F. Fellah, E. Canpolat, M. Kaya, S. Gür, J. Serb. Chem. Soc. 81 (2016) 12 (http://doi.org/10.2298/jsc151030008b)

H. Amiri Rudbari, M. R. Iravani, V. Moazam, B. Askari, M. Khorshidifard, N. Habibi, G. Bruno, J. Mol. Struct. 1125 (2016) 113 (https://doi.org/10.1016/j.molstruc.2016.06.055)

M. S. S. Adam, H. Elsawy, J. Photochem. Photobiol., B 184 (2018) 34 (https://doi.org/10.1016/j.jphotobiol.2018.05.002)

T. Mukherjee, J. O. Costa Pessoa, A. Kumar, A. R. Sarkar, Inorg. Chem. 50 (2011) 4349 (http://doi.org/10.1021/ic102412s)

M. Sankarganesh, N. Revathi, J. D. Raja, K. Sakthikumar, G. G. Vinoth Kumar, J. Rajesh, M. Rajalakshmi, L. Mitu, J. Serb. Chem. Soc. 84 (2018) 277 (http://doi.org/10.2298/jsc180609080s)

S. Yadamani, A. Neamati, M. Homayouni–Tabrizi, S. A. Beyramabadi, S. Yadamani, A. Gharib, A. Morsali, M. Khashi, The Breast 41 (2018) 107 (https://doi.org/10.1016/j.breast.2018.07.001)

F. Jafari–Moghaddam, S. A. Beyramabadi, M. Khashi, A. Morsali, J. Mol. Struct. 1153 (2018) 149 (https://doi.org/10.1016/j.molstruc.2017.10.007)

S. Menati, H. A. Rudbari, M. Khorshidifard, F. Jalilian, J. Mol. Struct. 1103 (2016) 94 (https://doi.org/10.1016/j.molstruc.2015.08.060)

D. Sanna, V. Ugone, M. Serra, E. Garribba, J. Inorg. Biochem. 173 (2017) 52 (https://doi.org/10.1016/j.jinorgbio.2017.04.023)

J. Berg, JL; Stryer, L., Biochemistry, in, WH Freeman and Company: New York, 2002,

P. P. Cohen, Biochem. J. 33 (1939) 1478 (PMCID: PMC1264599)

R.–Ș. Mezey, I. Máthé, S. Shova, M.–N. Grecu, T. Roșu, Polyhedron 102 (2015) 684 (https://doi.org/10.1016/j.poly.2015.10.035)

R. Manikandan, P. Vijayan, P. Anitha, G. Prakash, P. Viswanathamurthi, R. J. Butcher, K. Velmurugan, R. Nandhakumar, Inorg. Chim. Acta 421 (2014) 80 (https://doi.org/10.1016/j.ica.2014.05.035)

B. Annaraj, M. A. Neelakantan, Eur. J. Med. Chem. 102 (2015) 1 (https://doi.org/10.1016/j.ejmech.2015.07.041)

S. A. Elsayed, A. M. Noufal, A. M. El–Hendawy, J. Mol. Struct. 1144 (2017) 120 (https://doi.org/10.1016/j.molstruc.2017.05.020)

T. Rosu, E. Pahontu, M. Reka–Stefana, D.–C. Ilies, R. Georgescu, S. Shova, A. Gulea, Polyhedron 31 (2012) 352 (https://doi.org/10.1016/j.poly.2011.09.044)

H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, M. J. Khoshkholgh, Spectrochim. Acta, Part A 78 (2011) 1046 (https://doi.org/10.1016/j.saa.2010.12.045)

S. Beyramabadi, A. Morsali, A. Shams, J. Struct. Chem. 56 (2015) 243 (https://doi.org/10.1134/S0022476615020067)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37 (1988) 785 (http://doi.org/10.1103/PhysRevB.37.785)

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, J. Burant, Inc., Pittsburgh, PA (2003) 12478

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 270 (https://doi.org/10.1063/1.448799)

https://www.chemcraftprog.com (last accessed 12 Feb, 2020)

D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, Wiley Online Library, New York, 2001

T. A. Keith, TK Gristmill Software, Overland Park KS, USA (2013)

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)

T. Toozandejani, S. A. Beyramabadi, H. Chegini, M. Khashi, A. Morsali, M. Pordel, J. Mol. Struct. 1127 (2017) 15 (https://doi.org/10.1016/j.molstruc.2016.07.026)

H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. Beheshti, A. A. Esmaeili, M. J. Khoshkholgh, A. Morsali, Spectrochim. Acta, Part A 71 (2008) 1341 (https://doi.org/10.1016/j.saa.2008.04.019)

S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, A. A. Esmaeili, Spectrochim. Acta, Part A 83 (2011) 467 (https://doi.org/10.1016/j.saa.2011.08.067)

N. V. Tverdova, E. D. Pelevina, N. I. Giricheva, G. V. Girichev, N. P. Kuzmina, O. V. Kotova, J. Mol. Struct. 1012 (2012) 151 (https://doi.org/10.1016/j.molstruc.2011.06.037)

C. Kanagavalli, M. Sankarganesh, J. Dhaveethu Raja, M. Kalanithi, J. Serb. Chem. Soc. 84 (2018) 267 (https://doi.org/10.2298/jsc180521101k)

M. Ben Gzaiel, A. Oueslati, I. Chaabane, M. Gargouri, J. Mol. Struct. 1122 (2016) 280 (https://doi.org/10.1016/j.molstruc.2016.05.097)

Z. Moosavi–Tekyeh, N. Dastani, J. Mol. Struct. 1102 (2015) 314 (https://doi.org/10.1016/j.molstruc.2015.09.001)

G. Mariappan, N. Sundaraganesan, J. Mol. Struct. 1074 (2014) 51 (https://doi.org/10.1016/j.molstruc.2014.04.022)

R. Mathammal, K. Sangeetha, M. Sangeetha, R. Mekala, S. Gadheeja, J. Mol. Struct. 1120 (2016) 1 (https://doi.org/10.1016/j.molstruc.2016.05.008)

A. Kanaani, D. Ajloo, G. Grivani, A. Ghavami, M. Vakili, J. Mol. Struct. 1112 (2016) 87 (https://doi.org/10.1016/j.molstruc.2016.02.024)

E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte, Acta Crystallogr., Sect. B: Struct. Sci. 55 (1999) 563 (https://doi.org/10.1107/S0108768199002128)

I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122 (2000) 11154 (https://doi.org/10.1021/ja0017864)

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049 (https://doi.org/10.1021/ja00326a036).




DOI: https://doi.org/10.2298/JSC190129055G

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)