(E)-4-(((2-amino-5-chlorophenyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol and its Cu(II) complex: Synthesis, DFT calculations and AIM analysis

Morteza Yavari, S. Ali Beyramabadi, Ali Morsali, Mohammad Reza Bozorgmehr

Abstract


Herein, the (E)-4-(((2-amino-5-chlorophenyl)imino)methyl)-5-(hydro­xymethyl)-2-methylpyridin-3-ol [= HL] Schiff base and its [Cu(L)Cl] complex have been newly synthesized and characterized by several spectroscopies methods. In addition, the density functional theory (DFT) methods were used for investigation on the tautomerization of the HL Schiff base, structural parameters of the HL and [Cu(L)Cl] species, assignment of the IR vibrational bands and the NMR chemical shifts as well as the Natural Bond Orbital (NBO) analyses. The most stable tautomer of the HL Schiff base is the Enol form of the meta isomer. Optimized geometry of the free HL Schiff base is not planar. The L- anion acts as a N2O tridentate ligand, which bonded to the Cu2+ ion via the deprotonated phenolic oxygen, the amine and azomethine nitrogens. The [Cu(L)Cl] complex has a square planar geometry, in which the chloro ligand occupies the fourth coordination position. The DFT-computed values are in good consistency with the corresponding experimental values, confirming suitability of the optimized geometries for the HL and [Cu(L)Cl] species. According to the high-energy gaps, these compounds are stable. The atoms in molecule (AIM) analysis was used to evaluate strength of the bonding interactions and electron densities in structure of the compounds.


Keywords


Schiff base; pyridoxal; DFT; copper(II); AIM; tautomerization

Full Text:

PDF (1,782 kB)

References


A. A. A. Aziz, F. M. Elantabli, H. Moustafa, S. M. El-Medani, J. Mol. Struct. 1141 (2017) 563 (https://doi.org/10.1016/j.molstruc.2017.03.081)

P. Ghorbani, S. A. Beyramabadi, M. Homayouni-Tabrizi, P. Yaghmaei, J. Serb. Chem. Soc. 84 (2019) 1 (http://doi.org/10.2298/jsc190129055g)

C. Kanagavalli, M. Sankarganesh, J. Dhaveethu Raja, M. Kalanithi, J. Serb. Chem. Soc. (2018) 1 (https://doi.org/10.2298/jsc180521101k)

S. Saha, A. Das, K. Acharjee, B. Sinha, J. Serb. Chem. Soc. 81 (2016) 9 (http://doi.org/10.2298/jsc160425065s)

S. Sadeghi, A. Gafarzadeh, H. Naeimi, J. Anal. Chem. 61 (2006) 677 (https://doi.org/10.1134/s1061934806070136)

F. Jafari-Moghaddam, S. A. Beyramabadi, M. Khashi, A. Morsali, J. Mol. Struct. 1153 (2018) 149 (https://doi.org/10.1016/j.molstruc.2017.10.007)

K. C. Gupta, A.K. Sutar, J. Mol. Catal. A: Chem. 272 (2007) 64 (https://doi.org/10.1016/j.molcata.2007.03.025)

E. G. Bakirdere, M. F. Fellah, E. Canpolat, M. Kaya, S. Gür, J. Serb. Chem. Soc. 81 (2016) 12 (http://doi.org/10.2298/jsc151030008b)

M. Gaber, H. A. El-Ghamry, S. K. Fathalla, M. A. Mansour, Mater. Sci. Eng. C 83 (2018) 78 (https://doi.org/10.1016/j.msec.2017.11.004)

N. Ribeiro, S. Roy, N. Butenko, I. Cavaco, T. Pinheiro, I. Alho, F. Marques, F. Avecilla, J. Costa Pessoa, I. Correia, J. Inorg. Biochem. 174 (2017) 63 (https://doi.org/10.1016/j.jinorgbio.2017.05.011)

P. Sukanya, C. Venkata Ramana Reddy, Appl. Organomet. Chem. 0 e4526 (https://doi.org/10.1002/aoc.4526)

K. Dhahagani, M. P. Kesavan, K. Gujuluva Gangatharan Vinoth, L. Ravi, G. Rajagopal, J. Rajesh, Mater. Sci. Eng. C 90 (2018) 119 (https://doi.org/10.1016/j.msec.2018.04.032)

G. Anbarasu, M. Malathy, P. Karthikeyan, R. Rajavel, J. Solid State Chem. 253 (2017) 305 (https://doi.org/10.1016/j.jssc.2017.06.012)

M. Aghajani, N. Monadi, Appl. Organomet. Chem. 32 (2018) e4433 (https://doi.org/10.1002/aoc.4433)

H. Eshtiagh-Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, M. J. Khoshkholgh, Spectrochim. Acta, Part A 78 (2011) 1046 (https://doi.org/10.1016/j.saa.2010.12.045)

J. Berg, L. Stryer, Biochemistry, WH Freeman and Company: New York, 2002.

J. S. Hartman, E. C. Kelusky Canad. J. Chem. 57 (1979) 2118 (https://doi.org/10.1139/v79-340)

G. C. Lakshmi, S. Ananda, N. M. M. Gowda, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 39 (2009) 434 (https://doi.org/10.1080/15533170903227796)

19 H. Brurok, J. H. Ardenkjær-Larsen, G. Hansson, S. Skarra, K. Berg, J. O. G. Karlsson, I. Laursen, P. Jynge, Biochemical and Biophysical Research Communications 254 (1999) 768 (https://doi.org/10.1006/bbrc.1998.0131)

S. Beyramabadi, A. Morsali, A. Shams, J. Struct. Chem. 56 (2015) 243 (https://doi.org/10.1134/S0022476615020067)

S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, A. A. Esmaeili, Spectrochim. Acta, Part A 83 (2011) 467 (https://doi.org/10.1016/j.saa.2011.08.067)

S. A. Beyramabadi, M. Khashi, A. Morsali, A. Gharib, H. Chegini, J. Struct. Chem. 59 (2018) 1326 (https://doi.org/10.1134/S0022476618060112)

M. Yavari, S. A. Beyramabadi, A. Morsali, M. R. Bozorgmehr, J. Struct. Chem. 59 (2018) 1102 (https://doi.org/10.1134/s0022476618050128)

S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, A. A. Esmaeili, J. Struct. Chem. 53 (2012) 460 (https://doi.org/10.1134/S0022476612030079)

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, J. Burant, Gaussian 03, revision B. 05; Inc., Pittsburgh, PA (2003)

C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785 (http://doi.org/10.1103/PhysRevB.37.785)

P.,J. Hay, W.,R. Wadt, J. Chem. Phys. 82 (1985) 270 (https://doi.org/10.1063/1.448799)

R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449 (https://doi.org/10.1002/jcc.540161202)

R. Ditchfield, Molecular Physics 27 (1974) 789 (https://doi.org/10.1080/00268977400100711)

D.,C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, Wiley Online Library, New York, 2001.

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)

T. A. Keith, TK Gristmill Software, Overland Park KS, USA (2013)

R. F. W. Bader, Chemical Reviews 91 (1991) 893 (https://doi.org/10.1021/cr00005a013)

E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte, Acta Crystallogr. Sect. B 55 (1999) 563 (https://doi.org/10.1107/S0108768199002128)

I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122 (2000) 11154 (https://doi.org/10.1021/ja0017864)

A. Soroceanu, M. Cazacu, S. Shova, C. Turta, J. Kožíšek, M. Gall, M. Breza, P. Rapta, T. C. O. Mac Leod, A. J. L. Pombeiro, J. Telser, A. A. Dobrov, V. B. Arion, Eur. J. Inorg. Chem. 2013 (2013) 1458 (https://doi.org/10.1002/ejic.201201080)

M. Sankarganesh, N. Revathi, J. D. Raja, K. Sakthikumar, G. G. Vinoth Kumar, J. Rajesh, M. Rajalakshmi, L. Mitu, J. Serb. Chem. Soc. 83 (2018) 1 (http://doi.org/10.2298/jsc180609080s)

S. Noor, S. Kumar, S. Sabir, R. W. Seidel, R. Goddard, Acta Crystallographica Section E 71 (2015) m205 (https://doi.org/10.1107/S205698901501960X)

H. Kargar, R. Kia, T. Shakarami, M. N. Tahir, Acta Crystallographica Section E 68 (2012) m752 (https://doi.org/10.1107/S1600536812020387)

L. Yang, D. R. Powell, R. P. Houser, Dalton Transactions (2007) 955 (https://doi.org/10.1039/B617136B)

A. Kanaani, D. Ajloo, G. Grivani, A. Ghavami, M. Vakili, J. Mol. Struct. 1112 (2016) 87 (https://doi.org/10.1016/j.molstruc.2016.02.024)




DOI: https://doi.org/10.2298/JSC191010022Y

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)