(E)-4-(((2-Amino-5-chlorophenyl)imino)methyl)-5-(hydroxy-methyl)-2-methylpyridin-3-ol and its Cu(II) complex: Synthesis, DFT calculations and AIM analysis

Authors

  • Morteza Yavari Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad
  • S. Ali Beyramabadi Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad http://orcid.org/0000-0001-9616-8550
  • Ali Morsali Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad
  • Mohammad Reza Bozorgmehr Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad

DOI:

https://doi.org/10.2298/JSC191010022Y

Keywords:

Schiff base, pyridoxal, DFT, copper(II), AIM, tautomerization

Abstract

Herein, (E)-4-{[(2-amino-5-chlorophenyl)imino]methyl}-5-(hydro­xymethyl)-2-methylpyridin-3-ol [HL] Schiff base and its [Cu(L)Cl] complex were newly synthesized and characterized by several spectroscopic methods. In addition, density functional theory (DFT) methods were used for investigation of the tautomerization of the HL Schiff base, structural parameters of HL and [Cu(L)Cl] species, assignment of the IR vibrational bands and the NMR chem­ical shifts as well as natural bond orbital (NBO) analyses. The most stable tau­tomer of the HL Schiff base is the enol form of the meta isomer. The opti­mized geometry of the free HL Schiff base is not planar. The L- acts as a N2O tridentate ligand, which is bonded to Cu2+ via the deprotonated phenolic oxy­gen, and the amine and azomethine nitrogens. The [Cu(L)Cl] has a square pla­nar geometry in which the chloro ligand occupies the fourth coordination posit­ion. The DFT-computed values are in good consistency with the corresponding experimental values, confirming the suitability of the optimized geometries for HL and [Cu(L)Cl] species. According to the high-energy gaps, these com­pounds are stable. The atoms in molecule (AIM) analysis was used to evaluate strength of the bonding interactions and electron densities in structure of the compounds.

References

A. A. A. Aziz, F. M. Elantabli, H. Moustafa, S. M. El-Medani, J. Mol. Struct. 1141 (2017) 563 (https://doi.org/10.1016/j.molstruc.2017.03.081)

P. Ghorbani, S. A. Beyramabadi, M. Homayouni-Tabrizi, P. Yaghmaei, J. Serb. Chem. Soc. 84 (2019) 1 (http://doi.org/10.2298/jsc190129055g)

C. Kanagavalli, M. Sankarganesh, J. Dhaveethu Raja, M. Kalanithi, J. Serb. Chem. Soc. (2018) 1 (https://doi.org/10.2298/jsc180521101k)

S. Saha, A. Das, K. Acharjee, B. Sinha, J. Serb. Chem. Soc. 81 (2016) 9 (http://doi.org/10.2298/jsc160425065s)

S. Sadeghi, A. Gafarzadeh, H. Naeimi, J. Anal. Chem. 61 (2006) 677 (https://doi.org/10.1134/s1061934806070136)

F. Jafari-Moghaddam, S. A. Beyramabadi, M. Khashi, A. Morsali, J. Mol. Struct. 1153 (2018) 149 (https://doi.org/10.1016/j.molstruc.2017.10.007)

K. C. Gupta, A.K. Sutar, J. Mol. Catal., A 272 (2007) 64 (https://doi.org/10.1016/j.molcata.2007.03.025)

E. G. Bakirdere, M. F. Fellah, E. Canpolat, M. Kaya, S. Gür, J. Serb. Chem. Soc. 81 (2016) 12 (http://doi.org/10.2298/jsc151030008b)

M. Gaber, H. A. El-Ghamry, S. K. Fathalla, M. A. Mansour, Mater. Sci. Eng., C 83 (2018) 78 (https://doi.org/10.1016/j.msec.2017.11.004)

N. Ribeiro, S. Roy, N. Butenko, I. Cavaco, T. Pinheiro, I. Alho, F. Marques, F. Avecilla, J. Costa Pessoa, I. Correia, J. Inorg. Biochem. 174 (2017) 63 (https://doi.org/10.1016/j.jinorgbio.2017.05.011)

P. Sukanya, C. Venkata Ramana Reddy, Appl. Organomet. Chem. 32 (2018) e4526 (https://doi.org/10.1002/aoc.4526)

K. Dhahagani, M. P. Kesavan, K. Gujuluva Gangatharan Vinoth, L. Ravi, G. Rajagopal, J. Rajesh, Mater. Sci. Eng., C 90 (2018) 119 (https://doi.org/10.1016/j.msec.2018.04.032)

G. Anbarasu, M. Malathy, P. Karthikeyan, R. Rajavel, J. Solid State Chem. 253 (2017) 305 (https://doi.org/10.1016/j.jssc.2017.06.012)

M. Aghajani, N. Monadi, Appl. Organomet. Chem. 32 (2018) e4433 (https://doi.org/10.1002/aoc.4433)

H. Eshtiagh-Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, M. J. Khoshkholgh, Spectrochim. Acta, A 78 (2011) 1046 (https://doi.org/10.1016/j.saa.2010.12.045)

J. Berg, L. Stryer, Biochemistry, WH Freeman and Company, New York, 2002

J. S. Hartman, E. C. Kelusky Can. J. Chem. 57 (1979) 2118 (https://doi.org/10.1139/v79-340)

G. C. Lakshmi, S. Ananda, N. M. M. Gowda, Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 39 (2009) 434 (https://doi.org/10.1080/15533170903227796)

H. Brurok, J. H. Ardenkjær-Larsen, G. Hansson, S. Skarra, K. Berg, J. O. G. Karlsson, I. Laursen, P. Jynge, Biochem. Biophys. Res. Commun. 254 (1999) 768 (https://doi.org/10.1006/bbrc.1998.0131)

S. Beyramabadi, A. Morsali, A. Shams, J. Struct. Chem. 56 (2015) 243 (https://doi.org/10.1134/S0022476615020067)

S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, A. A. Esmaeili, Spectrochim. Acta, A 83 (2011) 467 (https://doi.org/10.1016/j.saa.2011.08.067)

S. A. Beyramabadi, M. Khashi, A. Morsali, A. Gharib, H. Chegini, J. Struct. Chem. 59 (2018) 1326 (https://doi.org/10.1134/S0022476618060112)

M. Yavari, S. A. Beyramabadi, A. Morsali, M. R. Bozorgmehr, J. Struct. Chem. 59 (2018) 1102 (https://doi.org/10.1134/s0022476618050128)

S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, A. A. Esmaeili, J. Struct. Chem. 53 (2012) 460 (https://doi.org/10.1134/S0022476612030079)

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr., T. Vreven, K. Kudin, J. Burant, Gaussian 03, revision B. 05; Pittsburgh, PA, 2003

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (http://doi.org/10.1103/PhysRevB.37.785)

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 270 (https://doi.org/10.1063/1.448799)

R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449 (https://doi.org/10.1002/jcc.540161202)

R. Ditchfield, Mol. Phys. 27 (1974) 789 (https://doi.org/10.1080/00268977400100711)

D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, Wiley Online Library, New York, 2001

T. A. Keith, TK Gristmill Software, Overland Park, KS, 2013

R. F. W. Bader, Chem. Rev. 91 (1991) 893 (https://doi.org/10.1021/cr00005a013)

E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte, Acta Crystallogr., B 55 (1999) 563 (https://doi.org/10.1107/S0108768199002128)

I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122 (2000) 11154 (https://doi.org/10.1021/ja0017864)

A. Soroceanu, M. Cazacu, S. Shova, C. Turta, J. Kožíšek, M. Gall, M. Breza, P. Rapta, T. C. O. Mac Leod, A. J. L. Pombeiro, J. Telser, A. A. Dobrov, V. B. Arion, Eur. J. Inorg. Chem. 2013 (2013) 1458 (https://doi.org/10.1002/ejic.201201080)

M. Sankarganesh, N. Revathi, J. D. Raja, K. Sakthikumar, G. G. Vinoth Kumar, J. Rajesh, M. Rajalakshmi, L. Mitu, J. Serb. Chem. Soc. 83 (2018) 1 (http://doi.org/10.2298/jsc180609080s)

S. Noor, S. Kumar, S. Sabir, R. W. Seidel, R. Goddard, Acta Cryst., E 71 (2015) m205 (https://doi.org/10.1107/S205698901501960X)

H. Kargar, R. Kia, T. Shakarami, M. N. Tahir, Acta Cryst., E 68 (2012) m752 (https://doi.org/10.1107/S1600536812020387)

L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007 (2007) 955 (https://doi.org/10.1039/B617136B)

A. Kanaani, D. Ajloo, G. Grivani, A. Ghavami, M. Vakili, J. Mol. Struct. 1112 (2016) 87 (https://doi.org/10.1016/j.molstruc.2016.02.024).

Published

2020-08-25

How to Cite

[1]
M. Yavari, S. A. Beyramabadi, A. Morsali, and M. R. Bozorgmehr, “(E)-4-(((2-Amino-5-chlorophenyl)imino)methyl)-5-(hydroxy-methyl)-2-methylpyridin-3-ol and its Cu(II) complex: Synthesis, DFT calculations and AIM analysis”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1033-1046, Aug. 2020.

Issue

Section

Theoretical Chemistry