Degradation of carbofuran in contaminated soil by plant microorganism combined technology

Xin Wang, Zhaoxing Li, Mengqin Yao, Jia Bao, Huiwen Zhang

Abstract


With the development of modern agriculture, the pollution caused by the use of chemical fertilizers and pesticides has become a serious problem, posing a threat to human health and the living environment. Bioremediation technology is receiving more and more attention due to the safety of contaminated soil, non-secondary pollution, and low cost. In this study, white rot fungi were immobilized by adsorption method, and the functional plants suitable for reducing carbofuran were screened by pot experiment. Based on the previous study, a combined remediation technique was established. The results showed that after 30 days, compared to the single bioremediation of carbofuran-contaminated soil, the degradation rate increased by 19 % through the corn-white rot fungi combined remediation, and by 17 % using the sorghum-white rot fungi combined remediation. The effect of pesticide content in soil on the combined remediation is mainly reflected in the significant difference in the number of microorganisms (p<0.05). Combined bioreme­diation may be a better alternative to mitigate the impact of high pollution on microorganisms at different pollutant concentrations compared to single microbial bioremediation or phytoremediation.


Keywords


fungal; combined bioremediation; immobilization; adsorption

Full Text:

PDF (1,437 kB)

References


P. Plangklang, A. Reungsang, W. Suphannafai, Biodegradation. 23 (2012) 473 (https://doi.org/10.1007/s10532-011-9526-5)

R. C. Gupta, J. Toxicol. Env. Health. 43 (1994) 383 (http://dx.doi.org/10.1080/15287399409531931)

D. V. Brki, S. L. Vitorovic, S. M. Gasic, N. K. Neskovic, Environ. Toxicol. Pharmacol. 25 (2008) 334 (https://doi.org/10.1016/j.etap.2007.11.002)

G. H. N. Farahani, I. B. Sahid, Z. Zakaria, A. Kuntom, D. Omar, Bull. Environ. Contam. Toxicol. 81 (2008) 294 (https://doi.org/10.1007/s00128-008-9468-8)

L. Yang, S. H. Chen, M. Y. Hu, W. N. Hao, P. Geng, Y. B. Zhang, Biol. Fertil. Soils. 47 (2011) 917 (https://doi.org/10.1007/s00374-011-0602-0)

World Health Organization (WHO): Carbofuran in drinking-water, WHO Guidelines for drinking-water quality (2004)

World Health Organization (WHO): The WHO recommended classification of pesticides by hazard and guidelines to classification 2000–2002 (2001)

K. A. Usmani, E. Hodgson, R. L. Rose, Chem-Biol. Interact. 150 (2004) 221 (https://doi.org/10.1016/j.cbi.2004.09.015)

R. C. Gupta, J. T. Goad, W. L. Kadel, J. Toxicol. Environ. Health. 42 (1994) 451 (https://doi.org/10.1080/15287399409531895)

M. Moriya, T. Ohta, K. Watanabe, T. Miyazawa, K. Kato, Y. Shirasu, Mutat. Res. 116 (1983) 185 (https://doi.org/10.1016/0165-1218(83)90059-9)

J. Fenoll, P. Hellin, P. Flores, C. M. Martinez, S. Navarro, J. Photochem. Photobiol. A Chem. 251 (2013) 33 (https://doi.org/10.1016/j.jphotochem.2012.10.012)

R. Saini, P. Kumar, Perspectives in Science. 8 (2016) 670 (https://doi.org/10.1016/j.pisc.2016.06.054)

A. Atifi, M. Talipov, H. Mountacer, M. D. Ryan, M. Sarakha, J. Photochem. Photobiol. A Chem. 235 (2012) 1 (https://doi.org/10.1016/j.jphotochem.2012.02.018)

G. Z. Memon, M.I. Bhanger, M. Akhtar, J. Colloid. Interf. Sci. 315 (2007) 33 (https://doi.org/10.1016/j.jcis.2007.06.037)

K. R. Krishna, L. Philip, J. Hazard. Mater. 160 (2008) 559 (https://doi.org/10.1016/j.jhazmat.2008.03.107)

P. Pimmata, A. Reungsang, P. Plangklang, Int. Biodeter. Biodegr. 85 (2013) 196 (https://doi.org/10.1016/j.ibiod.2013.07.009)

A. Bermúdez-Couso, D. Fernández-Calviño, I. Rodríguez-Salgado, J. C. Nóvoa-Muñoz, M. Arias-Estévez, Chemosphere. 88 (2012) 106 (https://doi.org/10.1016/j.chemosphere.2012.02.078)

T. C. Hazen, S. Wuertz, Curr. Opin. Biotech. 23 (2012) 414 (http://dx.doi.org/10.1016/j.copbio.2012.04.004)

V. Stabnikov, V. Ivanov, J. Chu, World J. Microbiol. Biotechnol. 31 (2015) 1303 (https://doi.org/10.1007/s11274-015-1881-7)

J. W. Kang, Biotechnol. Lett. 36 (2014) 1129 (https://doi.org/10.1007/s10529-014-1466-9)

J. Maroušek, Y. Kondo, M. Ueno, Y. Kawamitsu, Biotechnol. Appl. Bioc. 60 (2013) 253 (https://doi.org/10.1002/bab.1055)

S. C. S. Martins, C. M. Martins, S. T. Santaella, L. M. Fiuza, Afr. J. Biotechnol. 12 (2013) 4412 (https://doi.org/10.5897/AJB12.2677)

I. Es, J. D. G. Vieira, A. C. Amaral, Appl. Microbiol. Biotechnol. 99 (2015) 2065 (https://doi.org/10.1007/s00253-015-6390-y)

F. Boshagh, K. Rostami, N. Moazami, Int. J. Hydrogen Energ. 44 (2019) 14395 (https://doi.org/10.1016/j.ijhydene.2018.11.199)

P. N. Tallur, V. B. Megadi, H. Z. Ninnekar, Biodegradation. 20 (2009) 79 (https://doi.org/10.1007/s10532-008-9201-7)

M. B. Cassidy, H. Lee, J. T. Trevors, J. Ind. Microbiol. 16 (1996) 79 (https://doi.org/10.1007/BF01570068)

L. F. Huang, J. F. Zhuo, W. D. Guo, R. G. Spencer, Z. Y. Zhang, J. Xu, Mar. Pollut. Bull. 71 (2013) 74 (https://doi.org/10.1016/j.marpolbul.2013.03.032)

Y. He, J. M. Xu, Z. H. Ma, H. Z. Wang, Y. P. Wu, Soil Biol. Biochem. 39 (2007) 1121 (https://doi.org/10.1016/j.soilbio.2006.11.023)

A. A. Romeh, M. Y. Hendawi, Environ. Chem. Lett. 11 (2013) 163 (https://doi.org/10.1007/s10311-012-0392-0)

Y. He, X. F. Li, X. Q. Shen, Q. Jiang, J. Chen, J.C. Shi, X. J. Tang, J. M. Xu, Environ. Sci. Pollut. Res. 22 (2015) 9976 (https://doi.org/10.1007/s11356-015-4179-2)

A. Kawasaki, C. R. Warren, M. A. Kertesz, Plant Soil. 401 (2016) 365 (https://doi.org/10.1007/s11104-015-2756-2)

H. J. Wu, The situ remediation of pesticide contaminated soil by immobilized white-rot fungi. Shenyang University of Technology, Shenyang, China, 2016

Y. L. Qi, W. Wei, C. G. Chen, L. D. Chen, Glob. Ecol. Conserv. 18 (2019) e00606 (https://doi.org/10.1016/j.gecco.2019.e00606)

J. C. Kadakol, C. M. Kamanavalli, Y. Shouche, World J. Microbiol. Biotechnol. 27 (2011) 25 (https://doi.org/10.1007/s11274-010-0422-7)

N. Ding, H. C. Guo, T. Hayat, Y. P. Wu, J. M. Xu, FEMS Microbiol. Ecol. 70 (2009) 305 (https://doi.org/10.1111/j.1574-6941.2009.00742.x)

L. Philippot, J. M. Raaijmakers, P. Lemanceau, W. H. Putten, Nat. Rev. Microbiol. 11 (2013) 789 (https://doi.org/10.1038/nrmicro3109)

C. P. Zhang, B. Wang, X. Y. Dai, Environ. Sci. Pollut. Res. 24 (2017) 11483 (https://doi.org/10.1007/s11356-017-8463-1)

U. Stottmeister, A. Wieβner, P. Kuschk, U. Kappelmeyer, M. Kästner, O. Bederski, R. A. Müller, H. Moormann, Biotechnol. Adv. 22 (2003) 93 (https://doi.org/10.1016/j.biotechadv.2003.08.010)

Y. Q. Zhou, T. Tigane, X. Z. Li, M. Truu, J. Truu, Ü. Mander. Water Res. 47 (2013) 102 (https://doi.org/10.1016/j.watres.2012.09.030)

D. Bulgarelli, K. Schlaeppi, S. Spaepen, E. V. L. Themaat, P. Schulze-Lefert, Annu. Rev. Plant Biol. 64 (2013) 807 (https://doi.org/10.1146/annurev-arplant-050312-120106)

Y. Zhang, S. J. Ge, M. Y. Jiang, Z. Jiang, Z. G. Wang, B. B. Ma, Environ. Sci. Pollut. Res. 21 (2014) 6234 (https://doi.org/10.1007/s11356-013-2410-6)

H. Ribeiro, A. P. Mucha, C. M. R. Almeida, A. A. Bordalo, Biodegradation. 22 (2011) 729 (https://doi.org/10.1007/s10532-010-9446-9)




DOI: https://doi.org/10.2298/JSC190301052L

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)