Degradation of carbofuran in contaminated soil by plant–мicroorganism combined technology

Authors

  • Xin Wang College of Science, Shenyang University of Technology, 110870 Shenyang
  • Zhaoxing Li College of Science, Shenyang University of Technology, 110870 Shenyang
  • Mengqin Yao Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, 610041 Chengdu
  • Jia Bao College of Science, Shenyang University of Technology, 110870 Shenyang
  • Huiwen Zhang Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang

DOI:

https://doi.org/10.2298/JSC190301052L

Keywords:

fungal, combined bioremediation, immobilization, adsorption

Abstract

With the development of modern agriculture, the pollution caused by the use of chemical fertilizers and pesticides has become a serious problem, posing a threat to human health and the living environment. Bioremediation technology is receiving more and more attention due to the safety of contam­inated soil, non-secondary pollution, and low cost. In this study, white rot fungi were immobilized by the adsorption method, and the functional plants suitable for reducing carbofuran were screened by pot experiment. Based on a previous study, a combined remediation technique was established. The results showed that after 30 days, compared to the single bioremediation of carbofuran-con­tam­inated soil, the degradation rate increased by 19 % through the corn–white rot fungi combined remediation, and by 17 % using the sorghum–white rot fungi combined remediation. The effect of the pesticide content in soil on the combined remediation is mainly reflected in the significant difference in the number of microorganisms (p < 0.05). Combined bioremediation may be a better alternative to mitigate the impact of high pollution on microorganisms at different pollutant concentrations compared to single microbial bioremediation or phytoremediation.

References

P. Plangklang, A. Reungsang, W. Suphannafai, Biodegradation 23 (2012) 473 (https://doi.org/10.1007/s10532-011-9526-5)

R. C. Gupta, J. Toxicol. Environ. Health 43 (1994) 383 (http://dx.doi.org/10.1080/15287399409531931)

D. V. Brki, S. L. Vitorovic, S. M. Gasic, N. K. Neskovic, Environ. Toxicol. Pharmacol. 25 (2008) 334 (https://doi.org/10.1016/j.etap.2007.11.002)

G. H. N. Farahani, I. B. Sahid, Z. Zakaria, A. Kuntom, D. Omar, Bull. Environ. Contam. Toxicol. 81 (2008) 294 (https://doi.org/10.1007/s00128-008-9468-8)

L. Yang, S. H. Chen, M. Y. Hu, W. N. Hao, P. Geng, Y. B. Zhang, Biol. Fertil. Soils 47 (2011) 917 (https://doi.org/10.1007/s00374-011-0602-0)

World Health Organization (WHO), Carbofuran in drinking-water, WHO Guidelines for drinking-water quality, 2004

World Health Organization (WHO), The WHO recommended classification of pesticides by hazard and guidelines to classification 2000–2002, 2001

K. A. Usmani, E. Hodgson, R. L. Rose, Chem-Biol. Interact. 150 (2004) 221 (https://doi.org/10.1016/j.cbi.2004.09.015)

R. C. Gupta, J. T. Goad, W. L. Kadel, J. Toxicol. Environ. Health 42 (1994) 451 (https://doi.org/10.1080/15287399409531895)

M. Moriya, T. Ohta, K. Watanabe, T. Miyazawa, K. Kato, Y. Shirasu, Mutat. Res. 116 (1983) 185 (https://doi.org/10.1016/0165-1218(83)90059-9)

J. Fenoll, P. Hellin, P. Flores, C. M. Martinez, S. Navarro, J. Photochem. Photobiol., A Chem. 251 (2013) 33 (https://doi.org/10.1016/j.jphotochem.2012.10.012)

R. Saini, P. Kumar, Perspect. Sci. 8 (2016) 670 (https://doi.org/10.1016/j.pisc.2016.06.054)

A. Atifi, M. Talipov, H. Mountacer, M. D. Ryan, M. Sarakha, J. Photochem. Photobiol., A: Chem. 235 (2012) 1 (https://doi.org/10.1016/j.jphotochem.2012.02.018)

G. Z. Memon, M. I. Bhanger, M. Akhtar, J. Colloid Interface Sci. 315 (2007) 33 (https://doi.org/10.1016/j.jcis.2007.06.037)

K. R. Krishna, L. Philip, J. Hazard. Mater. 160 (2008) 559 (https://doi.org/10.1016/j.jhazmat.2008.03.107)

P. Pimmata, A. Reungsang, P. Plangklang, Int. Biodeter. Biodegr. 85 (2013) 196 (https://doi.org/10.1016/j.ibiod.2013.07.009)

A. Bermúdez-Couso, D. Fernández-Calviño, I. Rodríguez-Salgado, J. C. Nóvoa-Muñoz, M. Arias-Estévez, Chemosphere 88 (2012) 106 (https://doi.org/10.1016/j.chemosphere.2012.02.078)

T. C. Hazen, S. Wuertz, Curr. Opin. Biotech. 23 (2012) 414 (http://dx.doi.org/10.1016/j.copbio.2012.04.004)

V. Stabnikov, V. Ivanov, J. Chu, World J. Microbiol. Biotechnol. 31 (2015) 1303 (https://doi.org/10.1007/s11274-015-1881-7)

J. W. Kang, Biotechnol. Lett. 36 (2014) 1129 (https://doi.org/10.1007/s10529-014-1466-9)

J. Maroušek, Y. Kondo, M. Ueno, Y. Kawamitsu, Biotechnol. Appl. Biochem. 60 (2013) 253 (https://doi.org/10.1002/bab.1055)

S. C. S. Martins, C. M. Martins, S. T. Santaella, L. M. Fiuza, Afr. J. Biotechnol. 12 (2013) 4412 (https://doi.org/10.5897/AJB12.2677)

I. Es, J. D. G. Vieira, A. C. Amaral, Appl. Microbiol. Biotechnol. 99 (2015) 2065 (https://doi.org/10.1007/s00253-015-6390-y)

F. Boshagh, K. Rostami, N. Moazami, Int. J. Hydrogen Energy 44 (2019) 14395 (https://doi.org/10.1016/j.ijhydene.2018.11.199)

P. N. Tallur, V. B. Megadi, H. Z. Ninnekar, Biodegradation 20 (2009) 79 (https://doi.org/10.1007/s10532-008-9201-7)

M. B. Cassidy, H. Lee, J. T. Trevors, J. Ind. Microbiol. 16 (1996) 79 (https://doi.org/10.1007/BF01570068)

L. F. Huang, J. F. Zhuo, W. D. Guo, R. G. Spencer, Z. Y. Zhang, J. Xu, Mar. Pollut. Bull. 71 (2013) 74 (https://doi.org/10.1016/j.marpolbul.2013.03.032)

Y. He, J. M. Xu, Z. H. Ma, H. Z. Wang, Y. P. Wu, Soil Biol. Biochem. 39 (2007) 1121 (https://doi.org/10.1016/j.soilbio.2006.11.023)

A. A. Romeh, M. Y. Hendawi, Environ. Chem. Lett. 11 (2013) 163 (https://doi.org/10.1007/s10311-012-0392-0)

Y. He, X. F. Li, X. Q. Shen, Q. Jiang, J. Chen, J. C. Shi, X. J. Tang, J. M. Xu, Environ. Sci. Pollut. Res. 22 (2015) 9976 (https://doi.org/10.1007/s11356-015-4179-2)

A. Kawasaki, C. R. Warren, M. A. Kertesz, Plant Soil 401 (2016) 365 (https://doi.org/10.1007/s11104-015-2756-2)

H. J. Wu, The in-situ remediation of pesticide contaminated soil by immobilized white-rot fungi, Shenyang University of Technology, Shenyang, 2016

Y. L. Qi, W. Wei, C. G. Chen, L. D. Chen, Glob. Ecol. Conserv. 18 (2019) e00606 (https://doi.org/10.1016/j.gecco.2019.e00606)

J. C. Kadakol, C. M. Kamanavalli, Y. Shouche, World J. Microbiol. Biotechnol. 27 (2011) 25 (https://doi.org/10.1007/s11274-010-0422-7)

N. Ding, H. C. Guo, T. Hayat, Y. P. Wu, J. M. Xu, FEMS Microbiol. Ecol. 70 (2009) 305 (https://doi.org/10.1111/j.1574-6941.2009.00742.x)

L. Philippot, J. M. Raaijmakers, P. Lemanceau, W. H. Putten, Nat. Rev. Microbiol. 11 (2013) 789 (https://doi.org/10.1038/nrmicro3109)

C. P. Zhang, B. Wang, X. Y. Dai, Environ. Sci. Pollut. Res. 24 (2017) 11483 (https://doi.org/10.1007/s11356-017-8463-1)

U. Stottmeister, A. Wieβner, P. Kuschk, U. Kappelmeyer, M. Kästner, O. Bederski, R. A. Müller, H. Moormann, Biotechnol. Adv. 22 (2003) 93 (https://doi.org/10.1016/j.biotechadv.2003.08.010)

Y. Q. Zhou, T. Tigane, X. Z. Li, M. Truu, J. Truu, Ü. Mander. Water Res. 47 (2013) 102 (https://doi.org/10.1016/j.watres.2012.09.030)

D. Bulgarelli, K. Schlaeppi, S. Spaepen, E. V. L. Themaat, P. Schulze-Lefert, Ann. Rev. Plant Biol. 64 (2013) 807 (https://doi.org/10.1146/annurev-arplant-050312-120106)

Y. Zhang, S. J. Ge, M. Y. Jiang, Z. Jiang, Z. G. Wang, B. B. Ma, Environ. Sci. Pollut. Res. 21 (2014) 6234 (https://doi.org/10.1007/s11356-013-2410-6)

H. Ribeiro, A. P. Mucha, C. M. R. Almeida, A. A. Bordalo, Biodegradation 22 (2011) 729 (https://doi.org/10.1007/s10532-010-9446-9).

Published

2020-02-13

How to Cite

[1]
X. Wang, Z. Li, M. Yao, J. Bao, and H. Zhang, “Degradation of carbofuran in contaminated soil by plant–мicroorganism combined technology”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 111-123, Feb. 2020.

Issue

Section

Environmental Chemistry