Mechanical properties and corrosion behaviour of Al-Si alloys for IC engine
Main Article Content
Abstract
The paper describes the mechanical properties and the corrosion behaviour of three Al–Si alloys in 0.5 M NaCl solution. The alloys have exhibited similar values of hardness, but the highest tensile strength and the lowest elongation have shown the specimens of alloy with 11.38 % of silicon. Higher content of both copper and magnesium has contributed to better tensile strength and lower elongation of as-cast hypoeutectic alloys. The harmful effects of iron on mechanical properties of all alloys have been reduced to some extent by nickel and cobalt addition. The differences in the values of the open circuit potential of the examined alloys were insignificant. The thickness of the protective oxide layer has increased over time, and the layer has become very compact. Slight differences in the values of the corrosion potential of the alloys were determined, whereas the lowest value of the corrosion current was indicated for the hypereutectic alloy. The presence of intermetallic phases in the alloys has shown that the oxide film was not consistent. The severe pits have not been found at the surface of the corroded samples. Based on the obtained results, the examined alloys may be used for the manufacturing of the internal combustion engine parts.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. G. Kaufman, Introduction to aluminum alloys and tempers, ASM International, Materials Park, OH, 2000, p. 1 (ISBN 978-0-87170-689-8)
J. G. Kaufman, E. L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applic¬ations, ASM International, Materials Park, OH, 2004, pp. 2, 13 (ISBN 0-87170-803-5)
J. Hirsch, Trans. Nonferrous Met. Soc. China 24 (2014) 1995 (https://doi.org/10.1016/S1003-6326(14)63305-7)
C. G. Shivaprasad, K. Aithal, S. Narendranath, V. Desai, P. G. Mukunda, Int. J. Microstruct. Mater. Prop. 10 (2015) 274 (https://doi.org/10.1504/IJMMP.2015.072921)
K. Al–Helal, I. C. Stone, Z. Fan, Trans. Indian Inst. Met. 65 (2012) 663 (https://doi.org/10.1007/s12666-012-0171-4)
A. Ahmed, M. S. Wahab, A. A. Raus, K. Kamarudin, Q. Bakhsh, D. Ali, Indian J. Sci. Technol. 9 (2016) 1 (https://doi.org/10.17485/ijst/2016/v9i36/102155)
B. D. Baliga, K. N. Mohandas, T. A. Kumar, Int. J. Eng. Sci. Inn. Technol. 4 (2015) 310 (http://www.ijesit.com/Volume%204/Issue%203/IJESIT201503_42.pdf)
G. K. Sigworth, Int. J. Metalcast. 2 (2008) 19 (https://doi.org/10.1007/BF03355425)
J. Jorstad, D. Apelian, Int. J. Metalcast. 3 (2009) 13 (https://doi.org/10.1007/BF03355450)
J. R. Davis, Alloying: Understanding the Basics, ASM International, Materials Park, OH, 2001, p. 392 (ISBN 978-0-87170-744-4)
F. C. Robles-Hernandez, J. M. H. Ramírez, R. Mackay, Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications, Springer, Cham, 2017, p. 187 (https://doi.org/10.1007/978-3-319-58380-8)
V. S. Zolotorevsky, N. A. Belov, M. V. Glazoff, Casting Aluminum Alloys, Elsevier, Oxford, 2007, pp. 328, 329, 496 (ISBN 978-0-08-045370-5)
J. E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, OH, 1984, pp. 224, 235, 279 (ISBB 0871701766)
X. Dong, Y. Zhang, J. Shouxun, Mater. Sci. Eng., A 700 (2017) 291 (https://doi.org/10.1016/j.msea.2017.06.005)
S. Farahany, A. Ourdjini, H. R. Bakhsheshi-Rad, Trans. Nonferrous Met. Soc. China 26 (2016) 28 (https://doi.org/10.1016/S1003-6326(16)64085-2)
C. Y. Jeong, Mater. Trans., JIM 54 (2013) 588 (https://doi.org/10.2320/matertrans.M2012285)
M. Rejaeian, M. Karamouz, M. Emamy, M. Hajizamani, Trans. Nonferrous Met. Soc. China 25 (2015) 3539 (https://doi.org/10.1016/S1003-6326(15)63951-6)
M. Karamouz, M. Azarbarmas, M. Emamy, M. Alipour, Mater. Sci. Eng., A 582 (2013) 409 (https://doi.org/10.1016/j.msea.2013.05.088)
J. O. Lima, C. R. Barbosa, I. A. B. Magno, J. M. Nascimento, A. S. Barros, M. C. Oliveira, F. A. Souza, O. L. Rocha, Trans. Nonferrous Met. Soc. China 28 (2018) 1073 (https://doi.org/10.1016/S1003-6326(18)64751-X)
W. R. Osório, P. R. Goulart, A. Garcia, Mater. Lett. 62 (2008) 365 (https://doi.org/10.1016/j.matlet.2007.05.051)
A. M. Cardinale, D. Macciò, G. Luciano, E. Canepa, P. Traverso, J. Alloys Compd. 695 (2017) 2180 (https://doi.org/10.1016/j.jallcom.2016.11.066)
H. Ezuber, A. El-Houd, F. El-Shawesh, Mater. Des. 29 (2008) 801 (https://doi.org/10.1016/j.matdes.2007.01.021)
A. Dobrowska, B. Adamczyk-Cieślak, J. Mizera, K. J. Kurzydłowski, A. Kiełbus, Arch. Metall. Mater. 61 (2016) 209 (https://doi.org/10.1515/amm-2016-0038)
W. R. Osorio, N. Cheung, L. C. Peixoto, A. Garcia, Int. J. Electrochem. Sci. 4 (2009) 820 (www.electrochemsci.org/papers/vol4/4060820.pdf)
A. Wiengmoon, P. Sukchot, N. Tareelap, J. T. H. Pearce, T. Chairuangsri, Arch. Metall. Mater. 60 (2015) 881 (https://doi.org/10.1515/amm-2015-0223)
Y. Wu, H. Liao, J. Mater. Sci. Technol. 29 (2013) 380 (https://doi.org/10.1016/j.jmst.2013.02.001)
J. R. Davis, Corrosion of aluminum and aluminum alloys, ASM International, Materials Park, OH, 1999, pp. 34, 106 (ISBN 978-0-87170-629-4)
P. Chen, L. Liang, G. Luo, J. Zeng, Adv. Mater. Res. 900 (2014) 96 (https://doi.org/10.4028/www.scientific.net/AMR.900.96)
F. Toptan, A. C. Alves, I. Kerti, E. Ariza, L. A. Rocha, Wear 306 (2013) 27 (https://doi.org/10.1016/j.wear.2013.06.026)
G. Svenningsen, J. E. Lein, A. Bjorgum, J. H. Nordlien, Y. Yu, K. Nisanciogly, Corros. Sci. 48 (2006) 226 (https://doi.org/10.1016/j.corsci.2004.11.025)
A. S. Sani, I. Aliyu, E. Polycarp, J. Sci. Eng. Res. 3 (2012) 1 (https://www.researchgate.net/publication/273946238)
S.-L. Lee, Y.-C. Cheng, W.-C. Chen, C.-K. Lee, A.-H. Tan, Mater. Chem. Phys. 135 (2012) 503 (https://doi.org/10.1016/j.matchemphys.2012.05.015)
J. Campbell, M. Tiryakioğlu, Mater. Sci. Technol. 26 (2010) 262 (https://doi.org/10.1179/174328409X425227)
Y. Sui, Q. Wang, G. Wang, T. Liu, J. Alloys Compd. 622 (2015) 572 (https://doi.org/10.1016/j.jallcom.2014.10.148)
C. Liang, Z.-H. Chen, Z.-Y. Huang, F.-Q. Zu, Mater. Sci. Eng., A 690 (2017) 387 (https://doi.org/10.1016/j.msea.2017.03.016)
C. Bidmeshki, V. Abouei, H. Saghafian, S. G. Shabestari, M. T. Noghani, J. Mater. Res. Technol. 5 (2016) 250 (https://doi.org/10.1016/j.jmrt.2015.11.008)
Y. S. Jiménez, M. T. Gil, M. T. Guerra, L. S. Baltes, J. C. M. Rosca, Bull. Transylv. Univ. Braşov Ser. I 2 (2009) 197 (https://pdfs.semanticscholar.org/13ca/e21c63310a59ab777d1b7411f1d1b9b71319.pdf)
S. Mladenovic, Korozija materijala, TMF, Blgrade, 1978, p. 112 (In Serbian)
S. Gudić, L. Vrsalović, M. Kliškić, I. Jerković, A. Radonić, M. Zekić, Int. J. Electrochem. Sci. 11 (2016) 998 (http://www.electrochemsci.org/papers/vol11/110200998.pdf)
M. S. Kaiser, M. R. Qadir, S. Dutta, J. Mech. Eng. 45 (2015) 48 (https://doi.org/10.3329/jme.v45i1.24384)
A. Hossain, F. Gulshan, A. S. W. Kurny, J. Electrochem. Sci. Eng. 5 (2015) 173 (https://doi.org/10.5599/jese.174).