Impedance response of aluminum alloys with varying Mg content in Al–Mg systems during exposure to chloride corrosion environment Scientific paper

Main Article Content

Jelena Šćepanović
Marijana Pantović Pavlović
https://orcid.org/0000-0002-9507-3469
Darko Vuksanović
https://orcid.org/0000-0003-0868-4649
Gavrilo Šekularac
https://orcid.org/0000-0002-6370-4983
Miroslav M. Pavlović
https://orcid.org/0000-0003-3754-4143

Abstract

This research discusses the corrosion behavior of as-cast Al alloys with different Mg content by potentiostatic electrochemical impedance spectro­scopy (PEIS). The complex plane spectra of all samples feature a high-fre­quency loop, followed by semi-infinite diffusion impedance characteristics at low frequencies, with the corrosion-induced formation of a defined porous structure of a layer making finite diffusion through the pores dominant upon prolonged exposure. The most compact layer causes the most pronounced and well-resolved finite diffusion features in the impedance spectra of the sample with the highest Mg content, while the sample with the lowest Mg content has a highly porous layer unable to slow down the corrosion rate at the layer/sample interface. The highest layer capacitance and diffusion admittance are found in the sample with the highest Mg content, with a more adherent protect­ive film expected to form. However, the growth rate of the layer was not ade­quate for the remarkable closing of the pits, indicating the weakness of this sample towards pit activity. The results show that increasing Mg content imp­roves corrosion resistance and clearly separates bulky corrosion from localized pitting corrosion, but it also increases the thickness of a more compact, poorly adhesive layer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Šćepanović, M. Pantović Pavlović, D. Vuksanović, G. Šekularac, and M. M. Pavlović, “Impedance response of aluminum alloys with varying Mg content in Al–Mg systems during exposure to chloride corrosion environment: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 10, pp. 1025–1037, Oct. 2023.
Section
Electrochemistry

Funding data

References

X. Zhang, M. Zhang, R. Li, X. Feng, X. Pang, J. Rao, D. Cong, C. Yin, Y. Zhang, Coatings 11 (2021) (https://doi.org/10.3390/coatings11111316)

K. A. Yasakau, M. L. Zheludkevich, S. V Lamaka, M. G. S. Ferreira, Electrochim. Acta 52 (2007) 7651 (https://doi.org/10.1016/j.electacta.2006.12.072)

L. Garrigues, N. Pebere, F. Dabosi, Electrochim. Acta 41 (1996) 1209 (https://doi.org/10.1016/0013-4686(95)00472-6)

S. O. Adeosun, O. I. Sekunowo, S. A. Balogun, V. D. Obiekea, Int. J. Corros. 2012 (2012) 927380 (https://doi.org/10.1155/2012/927380)

S. P. B., T. U. Dhanaji, S. Dassani, M. Somasundaram, A. Muthuchamy, A. Raja Annamalai, Crystals 13 (2023) (https://doi.org/10.3390/cryst13020344)

B. Li, Z. Zhang, T. Liu, Z. Qiu, Y. Su, J. Zhang, C. Lin, L. Wang, Materials (Basel, Switzerland) 15 (2022) (https://doi.org/10.3390/ma15113912)

S. Ren, X. He, X. Qu, I. S. Humail, Y. Li, Mater. Sci. Eng., B 138 (2007) 263 (https://doi.org/10.1016/j.mseb.2007.01.023)

F. Andreatta, H. Terryn, J. H. W. de Wit, Corros. Sci. 45 (2003) 1733 (https://doi.org/10.1016/S0010-938X(03)00004-0)

M. Popović, E. Romhanji, Mater. Sci. Eng., A 492 (2008) 460 (https://doi.org/10.1016/j.msea.2008.04.001)

L. Ren, H. Gu, W. Wang, S. Wang, C. Li, Z. Wang, Y. Zhai, P. Ma, Materials (Basel, Switzerland) 12 (2019) (https://doi.org/10.3390/ma12244160)

H. P. Godard, The corrosion of light metals, Wiley, New York, 1967, ISBN: 978-0471308614

А. D. Cristian, M. M. Georgiana, S. A. Victor, M. M. A. B. Abdullah, AIP Conf. Proc. 1835 (2017) 20051 (https://doi.org/10.1063/1.4983791)

N. Loukil, in Magnesium Alloys Structure and Properties, T. Tański, P. Jarka, Eds., IntechOpen, Rijeka, 2021, p. 833 (https://doi.org/10.5772/intechopen.96232)

S. K. Kairy, P. A. Rometsch, K. Diao, J. F. Nie, C. H. J. Davies, N. Birbilis, Electrochim. Acta 190 (2016) 92 (https://doi.org/10.1016/j.electacta.2015.12.098)

F. Song, X. Zhang, S. Liu, Q. Tan, D. Li, Corros. Sci. 78 (2014) 276 (https://doi.org/10.1016/j.corsci.2013.10.010)

C. Brito, T. Vida, E. Freitas, N. Cheung, J. E. Spinelli, A. Garcia, J. Alloys Compd. 673 (2016) 220 (https://doi.org/10.1016/j.jallcom.2016.02.161)

M. M. Tawfik, M. M. Nemat-Alla, M. M. Dewidar, J. Mater. Res. Technol. 13 (2021) 754 (https://doi.org/https://doi.org/10.1016/j.jmrt.2021.04.076)

J. Liu, M.-J. Tan, A.-E.-W. Jarfors, Y. Aue-u-lan, S. Castagne, Mater. Des. 31 (2010) S66 (https://doi.org/10.1016/j.matdes.2009.10.052)

J. H. W. de Wit, Electrochim. Acta 49 (2004) 2841 (https://doi.org/10.1016/j.electacta.2004.01.045)

N. Birbilis, R. G. Buchheit, J. Electrochem. Soc. 152 (2005) B140 (https://doi.org/10.1149/1.1869984)

J. Wloka, G. Bürklin, S. Virtanen, Electrochim. Acta 53 (2007) 2055 (https://doi.org/10.1016/j.electacta.2007.09.004)

А. Pardo, M. C. Merino, R. Arrabal, S. Merino, F. Viejo, A. E. Coy, Appl. Surf. Sci. 252 (2006) 2794 (https://doi.org/10.1016/j.apsusc.2005.04.023).

Most read articles by the same author(s)