Binary copper(II) complex having stepped polymeric structure: Synthesis, characterization, DNA-binding and anti-fungal studies

Muhammad Iqbal, Saqib Ali, Muhammad Nawaz Tahir, Muhammad Abdul Haleem, Hussain Gulab, Naseer Ali Shah

Abstract


A rarely found polymeric complex of copper(II) was obtained from the reaction of para-methylphenyl acetate and copper sulfate and crystallized in quantitative yield. The complex was characterized using FT-IR, electron spin resonance, absorption spectroscopy, electrochemistry and powder and single crystal XRD studies. The structure was found to consist of intercom­nected paddlewheel units without an intervening ligand resulting in stepped polymeric arrangement of the structure. Purity of the sample was judged from powder XRD data while the ESR spectroscopy indicated a weak signal between 3000 and 4000 G values indicating Cu(II) in the complex. Electro­chemistry revealed irreversible, predominantly diffusion controlled CuIICuII/CuIICuI process with Do value calculated to be -3.032×10–8 cm2s–1. The complex was screened for DNA-binding ability through cyclic voltam­metry, absorption and florescence spectroscopy and viscometry; the former two yielding Kb values =3.34 × 103 and 6.90 × 103 M–1, respectively. The complex exhibited significant activity against fungal strainMucor piriformis (inhibiting its 75 ± 4 % growth), moderate activity against Aspergil­lus Niger (inhibiting its 50 ± 3 % growth) and slight activity against Helmi­nthosporium solani. These preliminary findings revealed excellent biological potential of the synthesized complex.

Keywords


polymeric Cu(II) complex; structure; DNA-binding; antifungal activity.

Full Text:

PDF (1,631 kB)

References


M. A. Halcrow, Chem. Soc. Rev. 42 (2013) 1784 (http://dx.doi.org/10.1039/c2cs35253b)

M. Iqbal, S. Ali, A. Haider, N. Khalid, Iran. J. Sci. Technol. Trans. Sci. 42 (2016) 1859 (http://dx.doi.org/10.1007/s40995-016-0141-5)

M. Iqbal, S. Ali, M. N. Tahir, Acta Chim. Slov. 65 (2018) 131 (http://dx.doi.org/10.17344/acsi.2017.3702)

P. Smart, A. Bejarano-Villafuerte, L. Brammer, CrystEngComm 15 (2013) 3151 (http://dx.doi.org/10.1039/C3CE26890J)

R. Clérac, F. A. Cotton, K. R. Dunbar, E. A. Hillard, M. A. Petrukhina, B. W. Smucker, C. R. Acad. Sci. Paris, Chimie / Chemistry. 4 (2001) 315 (http://dx.doi.org/10.1016/S1387-1609(01)01233-6)

U. Yildiz, B. Coban, J. Serb. Chem. Soc. 83 (2018) 1.

(https://doi.org/10.2298/JSC180802102Y)

G. Sava, A. Bergamo, P. J. Dyson, Dalton Trans., 40 (2011) 9069 (http://dx.doi.org/10.1039/c1dt10522a)

E. Soleimani, S. A. N. Taheri, M. Sargolzaei, J. Serb. Chem. Soc. 82 (2017) 665 (http://dx.doi.org/10.2298/JSC161206039S)

I. Banerjee, P. N. Samanta, K. K. Das, R. Ababei, M. Kalisz, A. Girard, C. Mathonière, M. Nethaji, R. Clérac, M. Ali, Dalton Trans 42 (2013) 1879 (http://dx.doi.org/10.1039/c2dt30983a)

M. Iqbal, S. Ali, M. N. Tahir, Z. Anorg. Allg. Chem. 644 (2018) 172 (http://dx.doi.org/10.1002/zaac.201700375)

D. L. Reger, A. Debreczeni, B. Reinecke, V. Rassolov, M. D. Smith, R. F. Semeniuc, Inorg. Chem. 50 (2011) 4669 (http://dx.doi.org/10.1021/ic200654n)

I. Fomina, Z. Dobrokhotova, G. Aleksandrov, A. Bogomyakov, M. Fedin, A. Dolganov, T. Magdesieva, V. Novotortsev, I. Eremenko, Polyhedron 29 (2010) 1734 (http://dx.doi.org/10.1016/j.poly.2010.02.021)

J. Wang, Analytical Electrochemistry, 1st ed., VCH Publishers, 1994, pp. 165–166. ISBN 1‐56081‐575‐2.

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York, 2004, p-236.

S. S. Massoud, F. R. Louka, Y. K. Obaid, R. Vicente, J. Ribas, R. C. Fischerc, F. A. Mautner, Dalton Trans 42 (2012) 3968 (http://dx.doi.org/10.1039/C2DT32540C)

M. Iqbal, S. Ali, M. N. Tahir, J. Coord. Chem. 71 (2018) 991 (http://dx.doi.org/10.1080/00958972.2018.1456655)

X. Wang, M. Yan, Q. Wang, H. Wang, Z. Wang, J. Zhao, J. Li, Z. Zhang, Molecules 22 (2017) 171 (http://dx.doi.org/10.3390/molecules22010171)

S. Ramakrishnan and M. Palaniandavar, J. Chem. Sci. 117 (2005) 179

(https://doi.org/10.1007/BF03356114)

S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H.

Krishnamurthy and M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309

(https://doi.org/10.1021/ic801144x)

B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar,

J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)

K. Alomar, A. Landreau, M. Allain, G. Bouet, G. Larcher, J. Inorg. Biochem. 126 (2013) 76 (http://dx.doi.org/10.1016/j.jinorgbio.2013.05.013)




DOI: https://doi.org/10.2298/JSC190423065I

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)