Binary copper(II) complex having stepped polymeric structure: Synthesis, characterization, DNA-binding and anti-fungal studies

Muhammad Iqbal, Saqib Ali, Muhammad Nawaz Tahir, Muhammad Abdul Haleem, Hussain Gulab, Naseer Ali Shah


A rarely found polymeric complex of copper(II) was obtained from the reaction of para-methylphenyl acetate and copper sulfate and crystallized in quantitative yield. The complex was characterized using FT-IR, electron spin resonance, absorption spectroscopy, electrochemistry and powder and single crystal XRD studies. The structure was found to consist of intercom­nected paddlewheel units without an intervening ligand resulting in stepped polymeric arrangement of the structure. Purity of the sample was judged from powder XRD data while the ESR spectroscopy indicated a weak signal between 3000 and 4000 G values indicating Cu(II) in the complex. Electro­chemistry revealed irreversible, predominantly diffusion controlled CuIICuII/CuIICuI process with Do value calculated to be -3.032×10–8 cm2s–1. The complex was screened for DNA-binding ability through cyclic voltam­metry, absorption and florescence spectroscopy and viscometry; the former two yielding Kb values =3.34 × 103 and 6.90 × 103 M–1, respectively. The complex exhibited significant activity against fungal strainMucor piriformis (inhibiting its 75 ± 4 % growth), moderate activity against Aspergil­lus Niger (inhibiting its 50 ± 3 % growth) and slight activity against Helmi­nthosporium solani. These preliminary findings revealed excellent biological potential of the synthesized complex.


polymeric Cu(II) complex; structure; DNA-binding; antifungal activity.

Full Text:

PDF (1,631 kB)


M. A. Halcrow, Chem. Soc. Rev. 42 (2013) 1784 (

M. Iqbal, S. Ali, A. Haider, N. Khalid, Iran. J. Sci. Technol. Trans. Sci. 42 (2016) 1859 (

M. Iqbal, S. Ali, M. N. Tahir, Acta Chim. Slov. 65 (2018) 131 (

P. Smart, A. Bejarano-Villafuerte, L. Brammer, CrystEngComm 15 (2013) 3151 (

R. Clérac, F. A. Cotton, K. R. Dunbar, E. A. Hillard, M. A. Petrukhina, B. W. Smucker, C. R. Acad. Sci. Paris, Chimie / Chemistry. 4 (2001) 315 (

U. Yildiz, B. Coban, J. Serb. Chem. Soc. 83 (2018) 1.


G. Sava, A. Bergamo, P. J. Dyson, Dalton Trans., 40 (2011) 9069 (

E. Soleimani, S. A. N. Taheri, M. Sargolzaei, J. Serb. Chem. Soc. 82 (2017) 665 (

I. Banerjee, P. N. Samanta, K. K. Das, R. Ababei, M. Kalisz, A. Girard, C. Mathonière, M. Nethaji, R. Clérac, M. Ali, Dalton Trans 42 (2013) 1879 (

M. Iqbal, S. Ali, M. N. Tahir, Z. Anorg. Allg. Chem. 644 (2018) 172 (

D. L. Reger, A. Debreczeni, B. Reinecke, V. Rassolov, M. D. Smith, R. F. Semeniuc, Inorg. Chem. 50 (2011) 4669 (

I. Fomina, Z. Dobrokhotova, G. Aleksandrov, A. Bogomyakov, M. Fedin, A. Dolganov, T. Magdesieva, V. Novotortsev, I. Eremenko, Polyhedron 29 (2010) 1734 (

J. Wang, Analytical Electrochemistry, 1st ed., VCH Publishers, 1994, pp. 165–166. ISBN 1‐56081‐575‐2.

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York, 2004, p-236.

S. S. Massoud, F. R. Louka, Y. K. Obaid, R. Vicente, J. Ribas, R. C. Fischerc, F. A. Mautner, Dalton Trans 42 (2012) 3968 (

M. Iqbal, S. Ali, M. N. Tahir, J. Coord. Chem. 71 (2018) 991 (

X. Wang, M. Yan, Q. Wang, H. Wang, Z. Wang, J. Zhao, J. Li, Z. Zhang, Molecules 22 (2017) 171 (

S. Ramakrishnan and M. Palaniandavar, J. Chem. Sci. 117 (2005) 179


S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H.

Krishnamurthy and M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309


B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar,

J. Inorg. Biochem. 100 (2006) 316 (

K. Alomar, A. Landreau, M. Allain, G. Bouet, G. Larcher, J. Inorg. Biochem. 126 (2013) 76 (


Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)