A binary copper(II) complex having a stepped polymeric structure: Synthesis, characterization, DNA-binding and anti-fungal studies

Muhammad Iqbal, Saqib Ali, Muhammad Nawaz Tahir, Muhammad Abdul Haleem, Hussain Gulab, Naseer Ali Shah


A rarely found polymeric complex of copper(II) was obtained in the reaction of 2-(4-methylphenyl)acetate and copper sulfate and crystallized in quantitative yield. The complex was characterized using FT-IR, electron spin resonance, absorption spectroscopy, electrochemistry and powder and single crystal XRD studies. The structure was found to consist of interconnected pad­dlewheel units without an intervening ligand resulting in a stepped polymeric arrangement of the structure. The purity of the sample was judged from powder XRD data while ESR spectroscopy indicated a weak signal between 3000 and 4000 G values, indicating the presence of Cu(II) in the complex. Electro­chemistry revealed an irreversible, predominantly diffusion controlled CuIICuII/ /CuIICuI process with a D0 value calculated to be 3.032×10-8 cm2 s-1. The complex was screened for its DNA-binding ability through cyclic voltam­metry, absorption and florescence spectroscopy and viscometry; the former two yield­ing Kb values of 3.34×103 and 6.90×103 M-1, respectively. The complex exhi­bited significant activity against fungal strain Mucor piriformis, moderate activity against Aspergillus niger and slight activity against Helminthosporium solani. These preliminary findings revealed the excellent biological potential of the syn­thesized complex.


polymeric Cu(II) complex; structure; DNA-binding; antifungal activity


M. A. Halcrow, Chem. Soc. Rev. 42 (2013) 1784 (http://dx.doi.org/10.1039/c2cs35253b)

M. Iqbal, S. Ali, A. Haider, N. Khalid, Iran. J. Sci. Technol., Trans. A: Sci. 42 (2016) 1859 (http://dx.doi.org/10.1007/s40995-016-0141-5)

M. Iqbal, S. Ali, M. N. Tahir, Acta Chim. Slov. 65 (2018) 131 (http://dx.doi.org/10.17344/acsi.2017.3702)

P. Smart, A. Bejarano-Villafuerte, L. Brammer, CrystEngComm 15 (2013) 3151 (http://dx.doi.org/10.1039/C3CE26890J)

R. Clérac, F. A. Cotton, K. R. Dunbar, E. A. Hillard, M. A. Petrukhina, B. W. Smucker, C. R. Acad. Sci., Ser. Ilc: Chim. 4 (2001) 315 (http://dx.doi.org/10.1016/S1387-1609(01)01233-6)

U. Yildiz, B. Coban, J. Serb. Chem. Soc. 83 (2018) 1 (https://doi.org/10.2298/JSC180802102Y)

G. Sava, A. Bergamo, P. J. Dyson, Dalton Trans. 40 (2011) 9069 (http://dx.doi.org/10.1039/c1dt10522a)

E. Soleimani, S. A. N. Taheri, M. Sargolzaei, J. Serb. Chem. Soc. 82 (2017) 665 (http://dx.doi.org/10.2298/JSC161206039S)

I. Banerjee, P. N. Samanta, K. K. Das, R. Ababei, M. Kalisz, A. Girard, C. Mathonière, M. Nethaji, R. Clérac, M. Ali, Dalton Trans. 42 (2013) 1879 (http://dx.doi.org/10.1039/c2dt30983a)

M. Iqbal, S. Ali, M. N. Tahir, Z. Anorg. Allg. Chem. 644 (2018) 172 (http://dx.doi.org/10.1002/zaac.201700375)

D. L. Reger, A. Debreczeni, B. Reinecke, V. Rassolov, M. D. Smith, R. F. Semeniuc, Inorg. Chem. 50 (2011) 4669 (http://dx.doi.org/10.1021/ic200654n)

I. Fomina, Z. Dobrokhotova, G. Aleksandrov, A. Bogomyakov, M. Fedin, A. Dolganov, T. Magdesieva, V. Novotortsev, I. Eremenko, Polyhedron 29 (2010) 1734 (http://dx.doi.org/10.1016/j.poly.2010.02.021)

J. Wang, Analytical Electrochemistry, 1st ed., VCH Publishers, Weinheim, 1994, pp. 165–166 (ISBN 1‐56081‐575‐2)

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York, 2004, p. 236

S. S. Massoud, F. R. Louka, Y. K. Obaid, R. Vicente, J. Ribas, R. C. Fischerc, F. A. Mautner, Dalton Trans. 42 (2012) 3968 (http://dx.doi.org/10.1039/C2DT32540C)

M. Iqbal, S. Ali, M. N. Tahir, J. Coord. Chem. 71 (2018) 991 (http://dx.doi.org/10.1080/00958972.2018.1456655)

X. Wang, M. Yan, Q. Wang, H. Wang, Z. Wang, J. Zhao, J. Li, Z. Zhang, Molecules 22 (2017) 171 (http://dx.doi.org/10.3390/molecules22010171)

S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci. 117 (2005) 179 (https://doi.org/10.1007/BF03356114)

S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag, H.

Krishnamurthy, M. A. Akbarsha, Inorg. Chem. 48 (2009) 1309 (https://doi.org/10.1021/ic801144x)

B. Selvakumar, V. Rajendiran, P. Uma Maheswari, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100 (2006) 316 (https://doi.org/10.1016/j.jinorgbio.2005.11.018)

K. Alomar, A. Landreau, M. Allain, G. Bouet, G. Larcher, J. Inorg. Biochem. 126 (2013) 76 (http://dx.doi.org/10.1016/j.jinorgbio.2013.05.013).

DOI: https://doi.org/10.2298/JSC190423065I

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)