Prediction of the GC–MS retention time for terpenoids detected in sage (Salvia officinalis L.) essential oil using QSRR approach

Main Article Content

Branimir Pavlić
Nemanja Teslić
Predrag Kojić
Lato L. Pezo
http://orcid.org/0000-0002-0704-3084

Abstract

This work aimed to obtain a validated model for prediction of retent­ion time of terpenoids isolated from sage herbal dust using supercritical fluid extraction. In total 32 experimentally obtained retention time of terpenes, which were separated and detected by GC–MS were further used to build a pre­diction model. The quantitative structure–retention relationship was employed to predict the retention time of essential oil compounds obtained in GC–MS analysis, using six molecular descriptors selected by a genetic algorithm. The selected descriptors were used as inputs of an artificial neural network, to build a retention time predictive quantitative structure–retention relationship model. The coefficient of determination for training cycle was 0.837, indicating that this model could be used for prediction of retention time values for essential oil compounds in sage herbal dust extracts obtained by supercritical fluid extract­ion due to low prediction error and moderately high r2. Results suggested that a 2D autocorrelation descriptor AATS0v was the most influential parameter with an approximately relative importance of 25.1 %.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. Pavlić, N. Teslić, P. Kojić, and L. L. Pezo, “Prediction of the GC–MS retention time for terpenoids detected in sage (Salvia officinalis L.) essential oil using QSRR approach”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 9–23, Feb. 2020.
Section
Biochemistry & Biotechnology

References

G. Miliauskas, P. R. Venskutonis, T. A. Van Beek, Food Chem. 85 (2004) 231 (https://doi.org/10.1016/j.foodchem.2003.05.007)

B. Pavlić, N. Teslić, A. Vidaković, S. Vidović, A. Velićanski, A. Versari, R. Radosavljević, Z. Zeković, Ind. Crops Prod. 107 (2017) 81 (https://doi.org/10.1016/j.indcrop.2017.05.031)

S. Glisic, J. Ivanovic, M. Ristic, D. Skala, J. Supercrit. Fluids 52 (2010) 62 (https://doi.org/10.1016/j.supflu.2009.11.009)

S. A. Aleksovski, H. Sovova, J. Supercrit. Fluids 40 (2007) 239 (https://doi.org/10.1016/j.supflu.2006.07.006)

M. Mohammadhosseini, S. D. Sarker, A. Akbarzadeh, 2017. J. Ethnopharmacol. 199 (2017) 257 (https://doi.org/10.1016/j.chemolab.2015.02.009)

J. Acevedo-Martínez, J. C. Escalona-Arranz, A. Villar-Rojas, F. Téllez-Palmero, R. Pérez-Rosés, L. González, R. Carrasco-Velar, J. Chromatogr. A 1102 (2006) 238 (https://doi.org/10.1016/j.chroma.2005.10.019)

S. J. Marrero-Ponce, Y. Barigye, M. E. Jorge-Rodríguez, T. Tran-Thi-Thu, Chem. Pap. 72 (2018) 57 (https://doi.org/10.1007/s11696-017-0257-x)

E. Kováts, Helv. Chim. Acta. 41 (1958) 1915 (https://doi.org/10.1002/hlca.19580410703)

M. Jalali-Heravi, H. Ebrahimi-Najafabadi, J. Sep. Sci. 34 (2011) 1538 (https://doi.org/10.1002/jssc.201100042)

A. Hinchliffe, Molecular Modelling for Beginners. John Wiley & Sons Ltd, London, 2003 (https://coulomb.umontpellier.fr/perso/lucyna.firlej/MasterPro/MMFB.pdf)

J. Akbar, S. Iqbal, F. Batool, A. Karim, K. W. Chan, Int. J. Mol. Sci. 13 (2012) 15387 (https://doi.org/10.3390/ijms131115387)

J. Dai, L. Jin, S. Yao, L. Wang, Chemosphere 42 (2001) 899 (https://doi.org/10.1016/S0045-6535(00)00178-8)

P. P. Dong, G. B. Ge, Y. Y. Zhang, C. Z. Ai, G. H. Li, L. L. Zhu, H. W. Luan, X. B. Liu, L. Yang, J. Chromatogr. A 1216 (2009) 7055 (https://doi.org/10.1016/j.chroma.2009.08.079)

K. Héberger, J. Chromatogr. A 1158 (2007) 273 (https://doi.org/10.1016/j.chroma.2007.03.108)

R. Kaliszan, T. Ba̧czek, A. Buciński, B. Buszewski, M. Sztupecka, J. Sep. Sci. 26 (2003) 271 (https://doi.org/10.1002/jssc.200390033)

S. Khodadoust, J. Chromatogr. Sep. Tech. (2013) (https://doi.org/10.4172/2157-7064.1000149)

H. Noorizadeh, M. Noorizadeh, A. S. Mumtaz, J. Saudi Chem. Soc. 18(3) (2014) 183 (https://doi.org/10.1016/j.jscs.2011.06.007)

X. J. Yao, A. Panaye, J. P. Doucet, R. S. Zhang, H. F. Chen, M. C. Liu, Z. D. Hu, B. T. Fan, J. Chem. Inf. Comput. Sci. 44 (2004) 1257 (https://doi.org/10.1021/ci049965i)

J.-L. Wolfender, G. Marti, A. Thomas, S. Bertrand, J Chromatogr. A 1382 (2015) 136 (https://doi.org/10.1016/j.chroma.2014.10.091)

R. I. J. Amos, E. Tyteca, M. Talebi, P. R. Haddad, R. Szucs, J. W. Dolan, C. A. Pohl, J. Chem. Inf. Model. 57 (2017) 2754 (https://doi.org/10.1021/acs.jcim.7b00346)

B. Pavlić, O. Bera, N. Teslić, S. Vidović, G. Parpinello, Z. Zeković, Ind. Crops Prod. 120 (2018) 305 (https://doi.org/10.1016/j.indcrop.2018.04.044)

J. Dong, D. S. Cao, H. Y. Miao, S. Liu, B. C. Deng, Y. H. Yun, N. N. Wang, A. P. Lu, W. B. Zeng, A. F. Chen, J. Cheminform. 7 (2015) 60 (https://doi.org/10.1186/s13321-015-0109-z)

J. Dong, Z. J. Yao, M. Wen, M. F. Zhu, N. N. Wang, H. Y. Miao, A. P. Lu, W. B. Zeng, D. S. Cao, J. Cheminform. 8 (2016) 34 (https://doi.org/10.1186/s13321-016-0146-2)

H. Moriwaki, Y. S. Tian, N. Kawashita, T. Takagi, J. Cheminf. 10 (2018) 4 (https://doi.org/10.1186/s13321-018-0258-y)

C. W. Yap, J. Comput. Chem. 32 (2011) 1466 (https://doi.org/10.1002/jcc.21707)

Heuristic Lab, https://dev.heuristiclab.com/trac.fcgi/ (last accessed: 10 January 2019)

D. E. Goldberg, Genetic algorithms in search, optimisation and machine learning, Addison-Wesley, Longman, Boston, MA, 1989 (ISBN:0201157675)

R. Leardi, R. Boggiaand, M. Terrile, J. Chemom. 6 (1992) 267 (https://doi.org/10.1002/cem.1180060506)

Statistica, v. 10. StatSoft, Inc., Tulsa, OK, 2010 (http://www.statsoft.com)

X. Hu, Q. Weng, Remote Sens. Environ. 113 (2009) 2089 (https://doi.org/10.1016/j.rse.2009.05.014)

D. Wang, Y. Yuan, S. Duan, R. Liu, S. Gu, S. Zhao, L. Liu, J. Xu, Chemometr. Intell. Lab. Syst. 143 (2015) 7 (https://doi.org/10.1016/j.chemolab.2015.02.009)

P. Kojic, R. Omorjan, Chem. Eng. Res. Des. 125 (2018) 398 (https://doi.org/10.1016/j.cherd.2017.07.029)

Y. Yoon, G. Swales, T. M. Margavio, J. Oper. Res. Soc. 44 (1993) 51 (https://doi.org/10.1057/jors.1993.6)

M. Nekoei, M. Salimi, M. Dolatabadi, M. Mohammadhosseini, Monatsh. Chem. 142 (2011) 943 (https://doi.org/10.1007/s00706-011-0510-x)

M. Nekoei, M. Mohammadhosseini, E. Pourbasheer, Med. Chem. Res. 24 (2015) 3037 (https://doi.org/10.1007/s00044-015-1354-4)

S. Ahmad, M. M. Gromiha, J. Comput. Chem. 24 (2013) 1313 (https://doi.org/10.1002/jcc.540030212)

J. Aires-de-Sousa, M. C. Hemmer, J. Gasteiger, Anal. Chem. 74 (2002) 80 (https://doi.org/10.1021/ac010737m)

R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, p. 27 (ISBN: 978-3-527-31852-0)

Y. H. Zhao, M. H. Abraham, A. M. Zissimos, J. Org. Chem. 68 (2003) 368 (https://pubs.acs.org/doi/10.1021/jo034808o)

L. B. Kier, L. H. Hall, Molecular connectivity in chemistry and drug research, Academic Press, New York, 1976, p. 1214. (https://doi.org/10.1002/jps.2600660852)

L. H. Hall, L. B. Kier, J. Chem. Inf. Comput. Sci. 35 (1995) 1039 (https://pubs.acs.org/doi/pdf/10.1021/ci00028a014)

L. B. Kier, L. H. Hall, J. Chem. Inf. Comput. Sci. 40 (2000) 792 (https://doi.org/10.1021/ci990135s)

M. Arsenović, L. Pezo, S. Stanković, Z. Radojević, Appl. Clay Sci. 115 (2015) 108 (https://doi.org/10.1016/j.clay.2015.07.030)

G. Moreau, P. Broto, Nouv. J. Chim. 4 (1980) 359

B. Hollas, MATCH 45 (2002) 27 (http://match.pmf.kg.ac.rs/electronic_versions/Match45/match45_27-33.pdf)

P. A. Moran, Biometrika 37 (1950) 17 (https://doi.org/10.1093/biomet/37.1-2.17)

R. C. Geary, Inc. Stat. 5 (1954) 115 (https://www.jstor.org/stable/pdf/2986645.pdf)

P. A. Azar, M. Nekoei, S. Riahi, M. R. Ganjali, K. Zare, J. Serb. Chem. Soc. 76 (2011) 891 (https://doi.org/10.2298/JSC100219076A).

Most read articles by the same author(s)