Prediction of denitrification capacity of alkalotolerant bacterial isolates from soil – An artificial neural network model
Main Article Content
Abstract
In the past decades, the bioremediation process based on denitrification by aerobic heterotrophic bacteria was extensively studied for different engineering approaches. Besides the fact that only non-pathogenic and non-biofilm forming bacteria must be used, it is very important to isolate bacteria or a group of bacteria in nature with the capacity to remove completely nitrate without accumulation of nitrogen oxides or ammonia as intermediates. In this article, the denitrification capacity of 43 bacterial strains isolated from slightly alkaline and calcite soils along the Danube River were investigated by artificial neural network (ANN) modelling. According to the obtained results, an ANN model was developed for the prediction of denitrification capacity of bacterial soil strains based on six signification denitrification indicators: biomass and N2 gas production, nitrate and nitrite concentration as well as nitrite and ammonia formation. The ANN model showed a reasonably good predictive capability of the outputs (overall R2 for prediction was 0.958). In addition, the experimental verification of the ANN in laboratory testing indicated that the ANN could predict the denitrification capacity of soil bacteria during the denitrification process in laboratory conditions.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
X. Zhu, W. Zhang, H. Chen, J. Mo, Acta Ecol. Sinica 35 (2015) 35 (https://dx.doi.org/10.1016/j.chnaes.2015.04.004)
A. Vidaković, O. Šovljanski, D. Vučurović, G. Racić, M. Đilas, N. Ćurčić, S. Markov, Chem. Ind. Chem. Eng. Q. 25 (2019) 403 (https://dx.doi.org/10.2298/CICEQ190111018V)
P. Ambus, S. Zechmeister-Boltenstern, in Biology of the Nitrogen Cycle, H. Bothe, S.J. Ferguson, W.E. Newton (Eds.), Amsterdam, 2007, p. 343 (https://dx.doi.org/10.1016/B978-044452857-5.50023-0)
Y. Yan, D. Fu, J. Shi, Water 11 (2019) 614 (https://dx.doi.org/10.3390/w11030614)
J. Rodziewicz, K.Ostrowska, W. Janczukowicz, A. Mielcarek, Water 11 (2019) 630 (https://dx.doi.org/10.3390/w11030630)
S. Casella, W. J. Payne, FEMS Microbiol. Lett. 140 (1996) 1 (https://dx.doi.org/10.1111/j.1574-6968.1996.tb08306.x)
J. Lalacut, A. Bennasar, R. Bosch, E. Garcia-Valdes, N. J. Palleroni, Microbiol. Mol. Biol. Rev.70 (2006) 510 (https://dx.doi.org/10.1128/MMBR.00047-05)
A. Rezaee, H. Godini, S. Dehestani, S. Kaviani, Iran. J. Environ. Heal. Sci. Eng. 7 (2010) 313 (http://www.bioline.org.br/request?se10036)
B. Deng, L. Fu, X. Zhang, J. Zheng, L. Peng, J. Sun, H. Zhu, Y. Wang, W. Li, X. Wu, D. Wu, PLoS ONE 9 (2014) e114886, (https://dx.doi.org/10.1371/journal.pone.0114886)
P. Bosch-Roig, J. L. Regidor Ros, R. Montes Estrellés, Int. Biodeterior. Biodegrad. 84 (2013) 266 (https://dx.doi.org/10.1016/j.ibiod.2012.09.099)
S. Vučetić, J. Ranogajec, S. Markov, A. Vidaković, H. Hiršenberger, O. Bera, Constr. Build. Mater. 142 (2017) 506 (https://dx.doi.org/10.1016/j.conbuildmat.2017.03.075)
A. G. Merma, C. A. C. Olivera, R. R. Hacha, M. L. Torem, B. F. dos Santos, J. Mater. Res. Technol. 8 (2019) 3076 (https://dx.doi.org/10.1016/j.jmrt.2019.02.022)
K. Abrougui, K. Gabsi, B. Mercatoris, C. Khemis, R. Amami, S. Chehaibi, Soil Tillage Res. 190 (2019) 202 (https://dx.doi.org/10.1016/j.still.2019.01.011)
J. S. Almeida, Curr. Opin. Biotechnol. 13 (2002) 72 (https://dx.doi.org/10.1016/S0958-1669 (02)00288-4)
O. Šovljanski, A. Tomić, L. Pezo, S. Markov, J. Sci. Food. Agric. 100 (2019) 1155 (https://dx.doi.org/10.1002/jsfa.10124)
A. M. Vidaković, O. Lj. Šovljanski, A. S. Ranitović, D. D. Cvetković, S. L. Markov, APTEFF 48 (2017) 295 (https://dx.doi.org/10.2298/APT1748295V)
L. Bellavia, D. B. Kim-Shapiro, S. B. King, Future Sci. OA 1 (2015) 2056 (https://dx.doi.org/10.4155/fso.15.36)
Y. Zeng, L. Chen, H. Li, J. Huang, B. Yu, Adv. Mater. Res. 884 (2014) 46 (https://dx.doi.org/10.4028/www.scientific.net/AMR.884-885.46)
A. Khamparia, B. Pandey, D. Kr. Pandey, D. Gupta, A. Khanna, V. H. C. de Albuquerque, Comput. Ind. 117 (2020) 103200 (https://dx.doi.org/10.1016/j.compind.2020.103200)
L. Bahmani, M. Aboonajmi, A. Arabhosseini, M. Hossein, Eng. Agric. Environ. Food 11 (2018) 25 (https://dx.doi.org/10.1016/j.eaef.2017.10.003)
B. Pavlić, L. Pezo, L. Peić Tukuljac, Z. Zeković, M. Bodroža Solarov, N. Teslić, J. Supercrit. Fluids 157 (2020) in press (https://dx.doi.org/10.1016/j.supflu.2019.104687)
T. Kollo, D. von Rosen, Advanced Multivariate Statistics with Matrices, Springer, Dordrecht, 2005 (https://dx.doi.org/10.1007/1-4020-3419-9)
I. C. Trelea, A. L. Raoult-Wack, G. Trystram, Food Sci. Technol. Int. 3 (1997) 459 (https://dx.doi.org/10.1177/108201329700300608)
I. A. Basheer, M. Hajmeer, J. Microbiol. Meth. 43 (2000) 3 (https://dx.doi.org/10.1016/S0167-7012 (00)00201-3)
F. Dahmoune, H. Remini, S. Dairi, O. Aoun, K. Moussi, N. Bouaoudia-Madi, N. Adjeroud, N. Kadri, K. Lefsih, L. Boughani, L. Mouni, B. Nayak B, K. Madani, Ind. Crop. Product. 77 (2015) 251 (https://dx.doi.org/10.1016/j.indcrop.2015.08.0620926-6690)
Y. Yoon, G, Swales, T. M. Margavio, J. Oper. Res. Soc. 44 (2017) 51 (https://dx.doi.org/10.1057/jors.1993.6)
P. S. Madamba, LWT-Food Sci. Technol. 35 (2002) 584 (https://dx.doi.org/10.1006/fstl.2002.0914)
D. C. Montgomery, Design and analysis of experiments, John Wiley and Sons, New York, 1984 (ISBN 978-1118-14692-7)
B. J. Taylor, Methods and Procedures for the Verification and Validation of Artificial Neural Networks, Springer, Berlin, 2006 (https://doi.org/10.1007/0-387-29485-6_4)
T. Turnyi, A. S. Tomlin, Analysis of Kinetics Reaction Mechanisms, Springer, Berlin, 2014 (https://doi.org/10.1007/978-3-662-44562-4).