Chemical structure and antifungal activity of mint essential oil components

Dragana V. Plavšić, Marija M. Škrinjar, Đorđe B. Psodorov, Lato L. Pezo, Ivan Lj. Milovanović, Dragan Đ. Psodorov, Predrag S. Kojić, Sunčica D. Kocić-Tanackov

Abstract


The objective of this research was to determine chemical composit­ion and to evaluate the antifungal activity of essential oil of Mentha piperita. By the application of GC/MS analysis of essential mint oil, 27 components were identified. The major components were menthol (39.9 %), menton (23.51 %), menthyl acetate (7.29 %), 1.8-cineol (5.96 %), isomenton (5.24 %), iso­menthol (3.17 %), trans-caryophyllene (2.88 %), limonene (2.14 %), pule­gon (1.38 %), beta-pinene (1.14 %) and piperiton (1.03 %). The quanti­ta­ti­ve struc­ture–retention relationship (QSRR) was employed to predict the retention time (RT) of Mentha piperita essential oil compounds obtained in GC/MS analysis, using twelve molecular descriptors selected by genetic algorithm. The selected descriptors were used, as inputs of an artificial neural network, to build an RT predictive QSRR model. The coefficient of determination was 0.983, during training cycle, indicating that this model could be used for prediction of RT values for essential oil compounds in Mentha piperita essential oil extracts. Essential oil of Mentha piperita showed antifungal activity on all tested iso­lates in the minimal inhibitory concentration range of 0.2–1.7 µl/ml and a mini­mal fungicidal concentration (MFC) range of 1.7–454.5 µl/ml. The most powerful antifungal activity of mint was observed in C. cladosporioides of MFC value 1.7 µl/ml. P. aurantiogriseum showed the lowest sensitivity of MFC value 454.5 µl/ml.


Keywords


QSRR; ANN; genetic algorithm; antimicrobial potential

References


L. da Cruz Cabral, V. Fernandez Pinto, A. Patriarca, Int. J. Food Microbiol. 166 (2013) 1 (https://doi.org/10.1016/j.ijfoodmicro.2013.05.026)

M. Raccach, J Food Saf. 6 (1984) 141 (https://doi.org/10.1111/j.1745-4565.1984.tb00479.x)

M. V. Piletić, B. Lj. Milić, Organic Chemistry, Tehnološki fakultet, Novi Sad 1989 (in Serbian)

A. Kedia, B. Prakash, P. K. Mishra, N. K. Dubey,Int. J. Food Microbiol. 1–7 (2014) 168 (https://doi.org/10.1016/j.ijfoodmicro.2013.10.008)

B. Ruiz, X. Flotats, Waste Manage. 34 (2014) 2063 (https://doi.org/10.1016/j.wasman.2014.06.026)

R. S. Farag, Z. Y. Daw, S. H. Abo-Raya, J. Food Sci. 54 (1989) 74 (https://doi.org/10.1111/j.1365-2621.1989.tb08571.x)

H. J. D. Dorman, S. G. Deans, J. Appl. Microbiol. 88 (2000) 308 (https://onlinelibrary.wiley.com/doi/epdf/10.1046/j.1365-2672.2000.00969.x)

R. Naigre, P. Kalck, C. Roques, I. Roux, G. Michel, Planta Med. 62 (1996) 275 (https://doi.org/10.1055/s-2006-957877)

N. Mimica-Dukić, S. Kujundžić, M. Soković, M. Couladis, Phytother. Res. 17 (2003) 368 (https://doi.org/10.1002/ptr.1159)

R. P. Adams, Identification of essential oil components by gas chromatography / mass spectroscopy, Allured Publishing Corporation, Carol Stream, IL, 1995

PaDel-Descriptor database (http://www.yapcwsoft.com/dd/padeldescriptor) (accessed: 10 May, 2019)

C. W. Yap, J. Comput. Chem. 32 (2011) 1466 (https://doi.org/10.1002/jcc.21707)

HeuristicLab, https://dev.heuristiclab.com/trac.fcgi/ (accessed: 10 May, 2019)

D. E. Goldberg, Genetic algorithms in search, optimisation and machine learning, Addison-Wesley, Boston, MA, 1989 (ISBN:0201157675)

R. Leardi, R. Boggia, M. Terrile, J. Chemom. 6 (1992) 267 (https://doi.org/10.1002/cem.1180060506)

Statistica 10 software, version 10, StatSoft, Inc. Statistica, data analysis software system

X. Hu, Q. Weng, Remote Sens. Environ. 113 (2009) 2089 (https://doi.org/10.1016/j.rse.2009.05.014)

A. R. Samson, S. E. Hoekstra, C. J. Frisvad, Introduction to Food-and Airborne Fungi, Centraal bureau voor Schimmelcultures, Utrecht, 2004

R. A. Samson, J. C. Frisvad, Penicillium subgenus Penicillium: new taxonomic shemes, mycotoctins and other extrolites, CentaalbureauvoorSchimmelcultures, Utrecht, 2004

J. I. Pitt, A. D. Hocking, Fungi and Food Spoilage, Springer Science–Business Media, New York, 2009

S. Ahmad, M. M. Gromiha, J. Comput. Chem. 24 (2003) 1313 (https://doi.org/10.1002/jcc.10298)

J. Aires-de-Sousa, M. C. Hemmer, J. Gasteiger, Anal. Chem. 74 (2002) 80 (https://pdfs.semanticscholar.org/3426/a10327d8e3c6478e42f425d15e8cc1e88738.pdf)

R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, Wiley VCH, Weinheim, 2009 (ISBN: 978-3-527-31852-0)

R. S. Pearlman, K. M. Smith, J. Chem. Inf. Comput. Sci. 39 (1999) 28 (https://doi.org/10.1021/ci980137x)

F. R. Burden, J. Chem. Inf. Comput. Sci. 29 (1989) 225 (https://doi.org/10.1021/ci00063a011)

F. R. Burden, Quant. Struct. Act. Relat.16 (1997) 309 (https://onlinelibrary.wiley.com/doi/pdf/10.1002/qsar.19970160406)

Y. K. Kang, M. S. Jhon, Theor. Chim. Acta 61 (1982) 41 (https://link.springer.com/article/10.1007/BF00573863)

L. H. Hall, L. B. Kier, J. Chem. Inf. Comput. Sci. 35 (1995) 1039 (https://doi.org/10.1021/ci00028a014)

R. Liu, H. Sun, S.S. So, J. Chem. Inf. Comput. Sci. 41 (2001) 1623 (https://doi.org/10.1021/ci010290i)

P. Gramatica, M. Corradi, V. Consonni, Chemosphere 41 (2000) 763 (https://doi.org/10.1016/S0045-6535(99)00463-4)

R. S. Pearlman, K. M. Smith, in Drug Design Ligand-Protein Interactions and Molecular Similarity, H. Kubinyi, G. Folkers, Y. C. Martin, Eds., Kluwer Academic Publishers, Dordrecht, 1998, p. 339 (https://doi.org/10.1007/0-306-46857-3)

R. Benigni, L. Passerini, A. Pino, A. Giuliani, Quant. Struct. Act. Relat. 18 (1999) 449 (https://www.academia.edu/13982599/The_information_content_of_the_eigenvalues_from_modified_adjacency_matrices_large_scale_and_small_scale_correlations)

M. Kazemi, H. Rostami, S. Shafiei, J Plant Sci. 7 (2012) 55 (https://doi.org/10.3923/jps.2012.55.66)

S. M. Mousavi, D. Raftos, J. Sci. Res. 11 (2012) 156 (https://www.researchgate.net/publication/267784697)

M. Ferdes, C. Ungureanu, UPB Scientific Bull., B 74 (2012) 87 (https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullf25_103172.pdf)

M. Mahboubi, N. Kazempour, SJST 36 (2014) 83 (https://pdfs.semanticscholar.org/ad3a/51e3af76d8ab60fec44046a5184c67d49208.pdf) (accessed: 10 May, 2019)

M. D. Soković, J. Vukojević, P. D. Marin, D. D. Brkić, V. Vajs, L. J. L. D. van Griensven, Molecules 14 (2009) 238 (https://doi.org/10.3390/molecules14010238)

N. R. Desam, А. Ј. Аl-Rajab, S. Mukul, M. M. Mylabathula, R. R. Gowkanapalli, M. Albratty, J. King. Saud. Univ. Sci. 31 (2019) 528 (http://dx.doi.org/10.1016/j.jksus.2017.07.013)

X. Xianfei, C. Xiaoqiang, Z. Shunying, Z. Guolin, Food Chem. 100 (2007) 1312 (https://doi.org/10.1016/j.foodchem.2005.12.011)

A. K. Tyagi, A. Malik, Food Control 22 (2011) 1707 (https://doi.org/10.1016/j.foodcont.2011.04.002)

M. Nikolić, J. Glamočlija, A. Ćirić, T. Marković, D. Marković, T. Perić, M. Soković, Lek. Sirov. 33 (2013) 63 (in Serbian)

G. S. Griffin, L. J. Markham, N. D. Leach, J. Essent. Oil Res. 12 (2000) 149 (https://doi.org/10.1080/10412905.2000.9699509)

M. Soković, P. D. Marin, D. Brkić, J. L. D. Leo, Food Global Sci. Books 1 (2007)

I. H. Bassolé, A. Lamien-Meda, B. Bayala, S. Tirogo, C. Franz, J. Novak, R. C. Nebié, M. H. Dicko, Molecules 15 (2010) 7825 (https://doi.org/10.3390/molecules15117825)

L. P. Roldán, G. J. Díaz, J. M. Duringer, Rev. Colomb. Cienc. Pecu. 23 (2010) 451 (print version ISSN 0120-0690; on-line version ISSN 2256-2958)

A. Sartoratto, A. L. M. Machado, C. Delarmelina, G. M. Figueira,M. K. T. Duarte,V. L. G. Rehder, Braz. J. Microbiol. 35 (2004) 275 (https://doi.org/10.1590/S1517-83822004000300001)

J. Scavroni, C. S. F. Boaro, M. O. M. Marques,L. C. Ferreira, Braz. J. Plant Physiol. 17 (2005) 345 (https://doi.org/10.1590/S1677-04202005000400002).




DOI: https://doi.org/10.2298/JSC191210017P

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)