Chemical structure and antifungal activity of mint essential oil components
Main Article Content
Abstract
The objective of this research was to determine chemical composition and to evaluate the antifungal activity of essential oil of Mentha piperita. By the application of GC/MS analysis of essential mint oil, 27 components were identified. The major components were menthol (39.9 %), menton (23.51 %), menthyl acetate (7.29 %), 1.8-cineol (5.96 %), isomenton (5.24 %), isomenthol (3.17 %), trans-caryophyllene (2.88 %), limonene (2.14 %), pulegon (1.38 %), beta-pinene (1.14 %) and piperiton (1.03 %). The quantitative structure–retention relationship (QSRR) was employed to predict the retention time (RT) of Mentha piperita essential oil compounds obtained in GC/MS analysis, using twelve molecular descriptors selected by genetic algorithm. The selected descriptors were used, as inputs of an artificial neural network, to build an RT predictive QSRR model. The coefficient of determination was 0.983, during training cycle, indicating that this model could be used for prediction of RT values for essential oil compounds in Mentha piperita essential oil extracts. Essential oil of Mentha piperita showed antifungal activity on all tested isolates in the minimal inhibitory concentration range of 0.2–1.7 µl/ml and a minimal fungicidal concentration (MFC) range of 1.7–454.5 µl/ml. The most powerful antifungal activity of mint was observed in C. cladosporioides of MFC value 1.7 µl/ml. P. aurantiogriseum showed the lowest sensitivity of MFC value 454.5 µl/ml.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
L. da Cruz Cabral, V. Fernandez Pinto, A. Patriarca, Int. J. Food Microbiol. 166 (2013) 1 (https://doi.org/10.1016/j.ijfoodmicro.2013.05.026)
M. Raccach, J Food Saf. 6 (1984) 141 (https://doi.org/10.1111/j.1745-4565.1984.tb00479.x)
M. V. Piletić, B. Lj. Milić, Organic Chemistry, Tehnološki fakultet, Novi Sad 1989 (in Serbian)
A. Kedia, B. Prakash, P. K. Mishra, N. K. Dubey,Int. J. Food Microbiol. 1–7 (2014) 168 (https://doi.org/10.1016/j.ijfoodmicro.2013.10.008)
B. Ruiz, X. Flotats, Waste Manage. 34 (2014) 2063 (https://doi.org/10.1016/j.wasman.2014.06.026)
R. S. Farag, Z. Y. Daw, S. H. Abo-Raya, J. Food Sci. 54 (1989) 74 (https://doi.org/10.1111/j.1365-2621.1989.tb08571.x)
H. J. D. Dorman, S. G. Deans, J. Appl. Microbiol. 88 (2000) 308 (https://onlinelibrary.wiley.com/doi/epdf/10.1046/j.1365-2672.2000.00969.x)
R. Naigre, P. Kalck, C. Roques, I. Roux, G. Michel, Planta Med. 62 (1996) 275 (https://doi.org/10.1055/s-2006-957877)
N. Mimica-Dukić, S. Kujundžić, M. Soković, M. Couladis, Phytother. Res. 17 (2003) 368 (https://doi.org/10.1002/ptr.1159)
R. P. Adams, Identification of essential oil components by gas chromatography / mass spectroscopy, Allured Publishing Corporation, Carol Stream, IL, 1995
PaDel-Descriptor database (http://www.yapcwsoft.com/dd/padeldescriptor) (accessed: 10 May, 2019)
C. W. Yap, J. Comput. Chem. 32 (2011) 1466 (https://doi.org/10.1002/jcc.21707)
HeuristicLab, https://dev.heuristiclab.com/trac.fcgi/ (accessed: 10 May, 2019)
D. E. Goldberg, Genetic algorithms in search, optimisation and machine learning, Addison-Wesley, Boston, MA, 1989 (ISBN:0201157675)
R. Leardi, R. Boggia, M. Terrile, J. Chemom. 6 (1992) 267 (https://doi.org/10.1002/cem.1180060506)
Statistica 10 software, version 10, StatSoft, Inc. Statistica, data analysis software system
X. Hu, Q. Weng, Remote Sens. Environ. 113 (2009) 2089 (https://doi.org/10.1016/j.rse.2009.05.014)
A. R. Samson, S. E. Hoekstra, C. J. Frisvad, Introduction to Food-and Airborne Fungi, Centraal bureau voor Schimmelcultures, Utrecht, 2004
R. A. Samson, J. C. Frisvad, Penicillium subgenus Penicillium: new taxonomic shemes, mycotoctins and other extrolites, CentaalbureauvoorSchimmelcultures, Utrecht, 2004
J. I. Pitt, A. D. Hocking, Fungi and Food Spoilage, Springer Science–Business Media, New York, 2009
S. Ahmad, M. M. Gromiha, J. Comput. Chem. 24 (2003) 1313 (https://doi.org/10.1002/jcc.10298)
J. Aires-de-Sousa, M. C. Hemmer, J. Gasteiger, Anal. Chem. 74 (2002) 80 (https://pdfs.semanticscholar.org/3426/a10327d8e3c6478e42f425d15e8cc1e88738.pdf)
R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, Wiley VCH, Weinheim, 2009 (ISBN: 978-3-527-31852-0)
R. S. Pearlman, K. M. Smith, J. Chem. Inf. Comput. Sci. 39 (1999) 28 (https://doi.org/10.1021/ci980137x)
F. R. Burden, J. Chem. Inf. Comput. Sci. 29 (1989) 225 (https://doi.org/10.1021/ci00063a011)
F. R. Burden, Quant. Struct. Act. Relat.16 (1997) 309 (https://onlinelibrary.wiley.com/doi/pdf/10.1002/qsar.19970160406)
Y. K. Kang, M. S. Jhon, Theor. Chim. Acta 61 (1982) 41 (https://link.springer.com/article/10.1007/BF00573863)
L. H. Hall, L. B. Kier, J. Chem. Inf. Comput. Sci. 35 (1995) 1039 (https://doi.org/10.1021/ci00028a014)
R. Liu, H. Sun, S.S. So, J. Chem. Inf. Comput. Sci. 41 (2001) 1623 (https://doi.org/10.1021/ci010290i)
P. Gramatica, M. Corradi, V. Consonni, Chemosphere 41 (2000) 763 (https://doi.org/10.1016/S0045-6535(99)00463-4)
R. S. Pearlman, K. M. Smith, in Drug Design Ligand-Protein Interactions and Molecular Similarity, H. Kubinyi, G. Folkers, Y. C. Martin, Eds., Kluwer Academic Publishers, Dordrecht, 1998, p. 339 (https://doi.org/10.1007/0-306-46857-3)
R. Benigni, L. Passerini, A. Pino, A. Giuliani, Quant. Struct. Act. Relat. 18 (1999) 449 (https://www.academia.edu/13982599/The_information_content_of_the_eigenvalues_from_modified_adjacency_matrices_large_scale_and_small_scale_correlations)
M. Kazemi, H. Rostami, S. Shafiei, J Plant Sci. 7 (2012) 55 (https://doi.org/10.3923/jps.2012.55.66)
S. M. Mousavi, D. Raftos, J. Sci. Res. 11 (2012) 156 (https://www.researchgate.net/publication/267784697)
M. Ferdes, C. Ungureanu, UPB Scientific Bull., B 74 (2012) 87 (https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullf25_103172.pdf)
M. Mahboubi, N. Kazempour, SJST 36 (2014) 83 (https://pdfs.semanticscholar.org/ad3a/51e3af76d8ab60fec44046a5184c67d49208.pdf) (accessed: 10 May, 2019)
M. D. Soković, J. Vukojević, P. D. Marin, D. D. Brkić, V. Vajs, L. J. L. D. van Griensven, Molecules 14 (2009) 238 (https://doi.org/10.3390/molecules14010238)
N. R. Desam, А. Ј. Аl-Rajab, S. Mukul, M. M. Mylabathula, R. R. Gowkanapalli, M. Albratty, J. King. Saud. Univ. Sci. 31 (2019) 528 (http://dx.doi.org/10.1016/j.jksus.2017.07.013)
X. Xianfei, C. Xiaoqiang, Z. Shunying, Z. Guolin, Food Chem. 100 (2007) 1312 (https://doi.org/10.1016/j.foodchem.2005.12.011)
A. K. Tyagi, A. Malik, Food Control 22 (2011) 1707 (https://doi.org/10.1016/j.foodcont.2011.04.002)
M. Nikolić, J. Glamočlija, A. Ćirić, T. Marković, D. Marković, T. Perić, M. Soković, Lek. Sirov. 33 (2013) 63 (in Serbian)
G. S. Griffin, L. J. Markham, N. D. Leach, J. Essent. Oil Res. 12 (2000) 149 (https://doi.org/10.1080/10412905.2000.9699509)
M. Soković, P. D. Marin, D. Brkić, J. L. D. Leo, Food Global Sci. Books 1 (2007)
I. H. Bassolé, A. Lamien-Meda, B. Bayala, S. Tirogo, C. Franz, J. Novak, R. C. Nebié, M. H. Dicko, Molecules 15 (2010) 7825 (https://doi.org/10.3390/molecules15117825)
L. P. Roldán, G. J. Díaz, J. M. Duringer, Rev. Colomb. Cienc. Pecu. 23 (2010) 451 (print version ISSN 0120-0690; on-line version ISSN 2256-2958)
A. Sartoratto, A. L. M. Machado, C. Delarmelina, G. M. Figueira,M. K. T. Duarte,V. L. G. Rehder, Braz. J. Microbiol. 35 (2004) 275 (https://doi.org/10.1590/S1517-83822004000300001)
J. Scavroni, C. S. F. Boaro, M. O. M. Marques,L. C. Ferreira, Braz. J. Plant Physiol. 17 (2005) 345 (https://doi.org/10.1590/S1677-04202005000400002).