High-temperature and high-pressure (p, ρ, T) measurements and derived thermodynamic properties of 1-octyl-3-methylimidazolium hexafluorophosphate
Main Article Content
Abstract
Densities of ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate [OMIM][PF6] at high temperatures and high pressures were measured. The measurements were made along 10 isotherms over a temperature range T = 278.15 to 413.15 K, at pressures up to 140 MPa by means of an Anton Paar DMA HPM vibration tube densimeter (VTD). The combined expanded relative uncertainties of the density, pressure and temperature measurements at the 95 % confidence level with a coverage factor of k = 2 are estimated to be 0.03 to 0.08 % (depending on temperature and pressure ranges), 0.1 %, and 0.015 K, respectively. We have critically assessed all of the reported high-pressure densities for [OMIM][PF6], together with the presented results, in order to carefully select primary data for development of a reference wide-ranging equation of state. Values of ρ–T isobars curvatures, (¶2r/¶T2)п, were estimated using the present high-pressure ρ‑T measurements and they were pretty low (0.78´10-7 to 1.50·´10-7 m3 kg-1 K-1), indicating that the heat capacity of [OMIM][PF6] very weakly depends on pressure, since (¶CP/¶P)T ≈ ≈ (¶2r/¶T2)п. Density data were fitted to the modified Tammann–Tait equation and the multiparametric polynomial-type equation of state (EOS) for the IL was developed using the measured high-pressure and high-temperature (p, ρ, T) data. This EOS, together with our previous measured heat capacity data at atmospheric pressure, was used to calculate high-pressure and high-temperature derived thermodynamic properties, such as isothermal compressibility, isentropic compressibility, isobaric thermal expansion coefficient, heat capacities, etc.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
H. Schmidt, M. Stephan, J. Safarov, I. Kul, J. Nocke, I. M. Abdulagatov, E. Hassel, J. Chem. Thermodyn. 47 (2012) 68 (https://doi.org/10.1016/j.jct.2011.09.027)
J. Safarov, R. Hamidova, S. Zepik, H. Schmidt, I. Kul, A. Shahverdiyev, E. Hassel, J. Mol. Liq. 187 (2013) 137 (https://doi.org/10.1016/j.molliq.2013.05.032)
R. Hamidova, I. Kul, J. Safarov, A. Shahverdiyev, E. Hassel, Brazilian J. Chem. Eng. 32 (2015) 303 (http://dx.doi.org/10.1590/0104-6632.20150321s00003120)
G. Huseynova, R. Hamidova, J. Safarov, M. Bashirov, E. Hassel, Transactions of Azerbaijan National Academy of Sciences, Series of Physical-mathematical and Technical Sciences 5 (2016) 128 (http://www.physics.gov.az/Transactions/2016/journal2016(5).pdf)
N. G. Polikhronidi, R.G. Batyrova, I. M. Abdulagatov, J. W. Magee, J. T. Wu, Phys. Chem. Liq. 52 (2014) 657 (https://doi.org/10.1080/00319104.2014.924381)
J. Safarov, G. Huseynova, M. Bashirov, E. Hassel, I. Abdulagatov, J Mol. Liquids 238 (2017) 347 (https://doi.org/10.1016/j.molliq.2017.05.013)
N. G. Polikhronidi, R. G. Batyrova, I. M. Abdulagatov, J. W. Magee, J. Wu, Int. J. Thermophys. 37 (2016) 103 (https://doi.org/10.1007/s10765-016-2109-2)
J. Safarov, F. Lesch, Kh. Suleymanli, A. Aliyev, A. Shahverdiyev, E. Hassel, I. M. Abdulagatov, J. Chem. Eng. Data 62 (2017) 3620 (https://doi.org/10.1021/acs.jced.7b00618)
J. Safarov, F. Lesch, Kh. Suleymanli, A. Aliyev, A. Shahverdiyev, E. Hassel, I.Abdulaga¬tov, Thermochim. Acta 658 (2017) 14 (https://doi.org/10.1016/j.tca.2017.10.022)
I.M. Abdulagatov, A. Tekin, J. Safarov, A. Shahverdiyev, E.Hassel, Int. J. Thermophys. 29 (2008) 505 (https://doi.org/10.1007/s10765-008-0410-4)
I. M. Abdulagatov, A. Tekin, J. Safarov, A. Shahverdiyev, E. Hassel, J. Sol. Chem. 37 (2008) 801 (https://doi.org/10.1007/s10953-008-9278-y)
I. M. Abdulagatov, A. Tekin, J. Safarov, A. Shahverdiyev, E. Hassel, J. Chem. Thermodyn. 40 (2008) 1386 (https://doi.org/10.1016/j.jct.2008.05.005)
I. M. Abdulagatov, J. Safarov, T. Guliyev, A. Shahverdiyev, E. Hassel, Phys. Chem. Liquids 47 (2009) 9 (https://doi.org/10.1080/00319100802372106)
J. Safarov, I. Kul, M. A. Talibov, A. Shahverdiyev, E. Hassel, J. Chem. Eng. Data 60 (2015) 1648 (https://doi.org/10.1021/je501033z)
J. Safarov, Ch. Bussemer, A. Aliyev, C. Lafuente, E. Hassel, I. Abdulagatov, J. Chem. Thermodyn. 124 (2018) 49 (https://doi.org/10.1016/j.jct.2018.04.018)
R. Taguchi, H. Machida, Y. Sato, R. L. Smith, J. Chem. Eng. Data 54 (2009) 22 (https://doi.org/10.1021/je800224k)
Z. Gu, J. F. Brennecke, J. Chem. Eng. Data 47 (2002) 339 (https://doi.org/10.1021/je010242u)
D. Tomida, A. Kumagai, S. Kenmochi, K. Qiao, C. Yokoyama, J. Chem. Eng. Data 52 (2007) 577 (https://doi.org/10.1021/je060464y)
R. L. Gardas, M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A. G. M. Ferreira, J. A. P. Coutinho, J. Chem. Eng. Data 52 (2007) 80 (https://doi.org/10.1021/je060247x)
D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Int. J. Thermophys. 28 (2007) 1147 (https://doi.org/10.1007/s10765-007-0241-8)
K. R. Harris, M. Kanakubo,, L. A. Woolf, J. Chem. Eng. Data 51 (2006) 1161 (https://doi.org/10.1021/je060082s)
M. Frenkel, R. Chirico, V. Diky, C. D. Muzny, A. Kazakov, J. W. Magee, I. M. Abdulagatov, Jeong Won Kang, NIST Thermo Data Engine, NIST Standard Reference Database 103b – Pure Compound, Binary Mixtures, and Chemical Reactions, Version 5.0, National Institute Standards and Technology, Boulder, Colorado-Gaithersburg, MD, 2010
J. Safarov, F. J. Millero,, R. Feistel,, A. Heintz,, E. Hassel, Ocean Sci. 5 (2009) 235 (https://doi.org/10.5194/os-5-235-2009)
N. Nabiyev, M. Bashirov, J. Safarov, A. Shahverdiyev, E. Hassel, J. Chem. Eng. Data 54 (2009) 1799 (https://doi.org/10.1021/je800840m)
I. M. Abdulagatov, J. Safarov, T. Guliyev, A. Shahverdiyev, E. Hassel J. Chem. Eng. Data 54 (2009) 248 (https://doi.org/10.1021/je800234h)
I. M. Abdulagatov, A. Tekin, J. Safarov, A. Shahverdiyev, E. Hassel, Thermochim. Acta 476 (2008) 51 (https://doi.org/10.1016/j.tca.2008.07.011)
E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference Database 25, REFPROP, Reference Fluid Thermodynamic and Transport Properties, NIST, Gaithersburg, MD, 2010
K. Harris, M. Kanakubo, J. Chem. Eng. Data 61 (2016) 2399 (https://doi.org/10.1021/acs.jced.6b00021)
H. Stabinger, Density Measurement using Modern Oscillating Transducers, South Yorkshire Trading Standards Unit, Sheffield, 1994
S. J. Aschcroft, D. R. Booker, J. C. R. Turner, Faraday Transact. 86 (1990) 145 (https://doi.org/10.1039/FT9908600145)
J. J. Segovia, O. Fandiño, E. R. López, L. Lugoa, M. C. Martín, J. Fernández, J. Chem. Thermodyn. 41 (2009) 632 (https://doi.org/10.1016/j.jct.2008.12.020)
J. T. Safarov, J. Chem. Thermodyn. 35 (2003) 1929 (https://doi.org/10.1016/j.jct.2003.08.015)
J. Safarov, F. J. Millero, R. Feistel, A. Heintz, E. Hassel, Ocean Sci. 6 (2009) 689 (www.ocean-sci-discuss.net/6/689/2009)
J. Safarov, S. Berndt, F.J. Millero, R. Feistel, A. Heintz , E.P. Hassel, Deep-Sea Res. I 65 (2012) 146 (https://doi.org/10.1016/j.dsr.2012.03.010 )
J. Safarov, S. Berndt, F. J. Millero, R. Feistel, A. Heintz , E. P. Hassel, Deep-Sea Res. I 78 (2013) 95 (https://doi.org/10.1016/j.dsr.2013.04.004)
K. A. Putilov, Thermodynamics of sample liquids, in Researches in Thermodyna¬mics, Nauka, Moscow, 1973, pp. 105–130
S. Gabriel, Chem. Berichte 21 (1888) 2669 (https://doi.org/10.1002/cber.18880210288)
G. Mie, Ann. Phys. 11 (1903) 657 (https://doi.org/10.1002/andp.19033160802)
E. Grüneisen, Ann. Phys. 39 (1912) 257 (https://doi.org/10.1002/andp.19123441202)
A. Eucken, For¬sch. . Gebiete . Ingen. 12 (1941) 113 (https://doi.org/10.1007/BF02584929)
R. Plank, Brennstoff Wärme Kraft 12 (1960) 302
T. C. Akhundov, Sh.Y. Imanov, Izvestiya VUZov Neft Gas 12 (1969) 100 (in Russian)
D. S. Kurumov, Russ. J. High Temp. 30 (1992) 1080 (http://www.mathnet.ru/links/09e8a3e534aa1aeeb5e3cf0b1eff7b54/tvt3685.pdf)
J. Safarov, R. Hamidova, S. Zepik, H. Schmidt, I. Kul, A. Shahverdiyev, E. Hassel, J. Mol. Liq.187 (2013) 137 (https://doi.org/10.1016/j.molliq.2013.05.032)
J. S. Rowlinson, F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed., Elsevier, Butterworth-Heinemann, 1982, p. 336
O. G. Sas, G. R. Ivaniš, M. Lj. Kijevčanin, B. Gonzales, A. Dominiguez, I. R. Radović, J. Chem. Eng. Data 63 (2018) 954 (https://doi.org/10.1021/acs.jced.7b00771).