Improvement and modification of energy-dispersive X-ray fluorescence method for determination of metal elements in cement leachates - chemometric approach

Nevenka Mijatović, Anja Terzić, Lato Pezo, Ljiljana Miličić, Dragana Živojinović

Abstract


A modification of analytical procedure for energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via “in-house” laboratory validation approach. The expanded uncertainties for ten analysed elements were obtained for entire working range of EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of chemometric in-house approach. The results obtained by modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF can be used as an effective and reliable alternative method for analysis of cement leachates.


Keywords


in-house validation; mineral additives; cluster analysis; ICP-OES; EDXRF, building materials

Full Text:

PDF (841 kB)

References


F. Jiao, L. Zhang, Z. Dong, T. Namioka, N. Yamada, Fuel Process. Tech. 152 (2016) 108 (https://doi.org/10.1016/j.fuproc.2016.06.013)

L. Zeyuan, Y. Yang, L. Ming, Z. Jia, S. Fucheng, H. Xin, Z. Jizhi, Q. Guangren, Waste Manag. 84 (2019) 329 (https://doi.org/10.1016/j.wasman.2018.11.049)

M. P. Mubiayi, M. E. Makhatha, E. T. Akinlabi, Mater. Today. 5 (2018) 17802 (https://doi.org/10.1016/j.matpr.2018.06.105)

A. Terzić, L. Pezo, N. Mijatović, J. Stojanović, M. Kragović, Lj. Miličić, Lj. Andrić, Con. Build. Mat. 180 (2018) 199 (https://doi.org/10.1016/j.conbuildmat.2018.06.007)

N. Mijatović, A. Terzić, L. Pezo, Lj. Miličić, A. Milosavljević, D. Živojinović, Sci. Sin. 51 (2019) 429 (https://doi.org/10.2298/SOS1904429M)

A. Król, K. Mizerna, M. Bożym,J. Hazard. Mater. 384 (2020) 121502 (https://doi.org/10.1016/j.jhazmat.2019.121502)

M. Mahedia, B. Cetinb, A. Dayioglu, Waste Manag. 95 (2019) 334 (https://doi.org/10.1016/j.wasman.2019.06.018)

J. Haberl, R. Koralewska, S. Schlumberger, M. Schuster, Waste Manag. 75 (2018) 361 (https://doi.org/10.1016/j.wasman.2018.02.015)

L. Borgesea, R. Dalipia, A. Riboldia, F. Biloa, A. Zaccoa, S. Federicia, M. Bettinellic, E. Bontempia, L. Depero, Talanta. 181 (2018) 165 (https://doi.org/10.1016/j.talanta.2017.12.087)

A. Chandrasekarana, R. Ravisankar, Appl. Radiat. Isot. 147 (2019) 76 (https://doi.org/10.1016/j.apradiso.2019.01.009)

M. Tiwari, S.K. Sahu, R.C. Bhangare, P.Y. Ajmal, G.G. Pandit, Appl. Radiat. Isot. 90 (2014) 53 (https://doi.org/10.1016/j.apradiso.2014.03.002)

Y. Fiamegos, M. Beatriz, Spectrochim. acta Part B. 150 (2018) 59 (https://doi.org/10.1016/j.sab.2018.10.009)

C. García-Florentinoa, M. Magureguib, H. Morillasa, I. Marcaidaa, J. Madariaga, Microchem. J. 133 (2017) 104 (https://doi.org/10.1016/j.microc.2017.03.020)

S. Zhoua, Z. Yuanb, Q. Chenga, Z. Zhanga, J. Yang, Environ. Pollut. 243 (2018) 1325 (https://doi.org/10.1016/j.envpol.2018.09.087)

E. Marguí, R. Van Grieken, C. Fontas, M. Hidalgo, I. Queralt, Appl. Spectrosc. Rev. 45 (3) (2010) 179 (https://doi.org/10.1080/05704920903584198)

D. Pearsona, S. Chakrabortyb, B. Dudaa, B. Lic, D. Weindorfa, S. Debd, E. Brevike, D. Rayf, J. Hydrol. 544 (2017) 172 (https://doi.org/10.1016/j.jhydrol.2016.11.018)

A. Turner, A. Taylo, Talanta. 190 (2018) 498 (https://doi.org/10.1016/j.talanta.2018.08.024)

P. Szajerskia, A. Bogobowicza, H. Bemb, A. Gasiorowskia, J. Clean. Prod. 222 (2019) 90 (https://doi.org/10.1016/j.jclepro.2019.03.010)

N. Mijatović, A. Terzić, L. Pezo, Lj. Miličić, D. Živojinović, Spectrochim. acta Part B. 162 (2019) 105729 (https://doi.org/10.1016/j.sab.2019.105729)

SRPS EN 12457-4: (Characterization of waste - Leaching - Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction) (2008)

IUPAC, International Union of Pure Applied Chemistry, Nomenclature, symbols, units and their usage in spectrochemical analysis-III. Analytical flame spectroscopy and associated non-flame procedures, Spectrochim. Acta Part B 33 (1978) 247 (https://doi.org/10.1016/0584-8547(78)80045-7)

Low Level Waste Repository Ldt https://assets.publishing.service.gov.uk/goverment/uploads/system/uploads/attachment_data/file/690840/WasteAcceptanceCriteriaSupercompactableWSC-WAC-SUP.pdf (23. 04. 2020)

V. Barwicka, S. Wood, J. Anal. At. Spectrom. 25 (2010) 785 (https://doi.org/10.1039/B919885G)

M. Thompson, S. Ellison, R. Wood, Pure Appl. Chem. 74 (5) (2002) 835 (http://doi.org/10.1351/pac200274050835)

Nordtest http://www.citac.cc/Bertil Magnusson - NORDTEST Guide on uncertainty - 2003.pdf (22. 04. 2020).

D. Schiavo, L.C. Trevizan, E.R.P. Filho, J.A. Nóbrega, Spectrochim. Acta Part B 64 (2009) 544 (https://doi.org/10.1016/j.sab.2009.05.009)

Bureau international des poids et mesures https://www.bipm.org/en/publications/guides/gum.html (20. 04. 2020)




DOI: https://doi.org/10.2298/JSC200501067M

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)