Chemical composition and antiproliferative potential of dried wild apple and pear tea before and after in vitro simulated digestion

Authors

  • Jelena Živković Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade,
  • Katarina Savikin Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade
  • Nemanja Stanisavljević Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade
  • Gordana Zdunić Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade
  • Tatjana Stanojković Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade
  • Jelena Samardžić Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade

DOI:

https://doi.org/10.2298/JSC180604073Z

Keywords:

bioaccessibility, phenolics, food matrix, fruit

Abstract

Decoctions obtained from dried apple and pear fruits were subjected to in vitro digestion in the presence of food matrix in order to determine changes in polyphenol content and antiproliferative activity. Total phenolic and total proanthocyanidins content were determined using spectrophotometrical methods, and phenolic compounds were analyzed by RP-HPLC/DAD before and after digestion. Chlorogenic acid and phlorizin dihydrate were the major identified compounds. Addition of food matrix immediately decreased content of individual and total phenolics. After digestion they were slightly elevated but still lower than in initial samples. Antiproliferative activity was investigated on human epithelial carcinoma cell line (HeLa), human colon carcinoma (LS174) and human fetal lung fibroblast (MRC-5) cells. Exhibited growth inhibition was not correlated with the content of phenolics in tested samples indicating that it could not be explained solely by their content. With the exception of apple decoction effect on HeLa cells, digestion process resulted in significant increase of antiproliferative activity.

References

H. R. Liu, Am. J. Clin. Nutr. 78 (2003) 517S (https://doi.org/10.1093/ajcn/78.3.517S).

M. Kalinowska, A. Bielawska, H. Lewandowska-Siwkiewicz, W. Priebe, W. Lewandowski, Plant. Physiol. Biochem. 84 (2014) 169 (https://doi.org/10.1016/-j.plaphy.2014.09.006)

S. Khurana, S. Venkatataman, A. Hollingsworth, M. Piche, T. C. Tai, Nutrients 5 (2013) 3779 (https://doi/full/10.1080/10942912.2017.1354017)

L. M. O. Griep, W. M. M. Verschuren, D. Kromhont, M. C. Ocké, J. M. Geleijnse, Stroke 42 (2011) 3190 (https://doi.org/10.1161/STROKEAHA.110.611152)

J. K. Kundu, K. S. Chun, Asian Pac. J. Cancer Prev. 15 (2014) 3343 (https://doi.org/-10.1002/9781118464663.ch2)

K. Šavikin, G. Zdunić, T. Janković, D. Gođevac, T. Stanojković, D. Pljevljakušić, Food Res. Int. 62 (2014) 677 (https://doi.org/10.1016/j.foodres.2014.04.017)

K. Kevers, J. Pincemail, J. Tabart, J. O. Defraigne, J. Dommes, J. Agri. Food Chem. 59 (2011) 6165 (https://doi.org/10.1021/jf201013k)

S. Reagen-Shaw, D. Eggert, H. Mukhtar, N. Ahmad, Nutr. Cancer 62 (2010) 517 (https://doi.org/10.1080/01635580903441253)

J. Sun, Y. F. Chu, X. Wu, R. H. Liu, J. Agri. Food Chem. 50 (2002) 7449 (https://doi.org/10.1021/jf0207530)

X. He, R. H. Liu, J. Agri. Food Chem. 56 (2008) 9905 (https://doi.org/10.1021/-jf8015255)

Pharmacopoea Jugoslavica, Editio Quarta. Belgrade, Federal Institute of Public Health (in Serbian) 1984.

N. Stanisavljević, J. Samardžić, T. Janković, K. Šavikin, M. Mojsin, V. Topalović, M. Stevanović, Food Chem. 175 (2015) 516 (https://doi.org/10.1016/j.food-chem.2014.-12.009)

A. G. Oomen, C. J. Rompelberg, M. A. Bruil, C. J. Dobbe, D. P. Pereboom, A. J. Sips, Arch. Environ. Contam. Toxicol. 44 (2003) 281 (https://doi.org/10.1007/s00244-002-1278-0)

V. L. Singleton, J. A. J. Rossi, Am. J. Enol. Vitic. 16 (1965) 144 (http://www.ajev-online.org/content/16/3/144)

Y. G. Li, G. Tanner, P. Larkin, J. Sci. Food Agric. 70 (1996) 89 (https://doi.org/10.1002/-(SICI)1097-0010(199601)70:1%3C89::AID-JSFA470%3E3.0.CO;2-N)

L. Tavares, I. Figueira, D. Macedo, G. J. McDougall, M. C. Leirao, H. L. A. Vieira, D. Stewart, P. M. Alves, R. B. Ferreira, C. N. Santos, Food Chem. 131 (2012) 1443 (https://doi.org/10.1016/j.foodchem.2011.10.025)

N. Pantelić, T. P. Stanojković, B. B. Zmejkovski, T. J. Sabo, G. N. Kaluđerović, Eur. J. Med. Chem. 90 (2015) 766 (https://doi.org/10.1016/j.ejmech.2014.12.019)

T. Mosmann, J. Immunol. Methods. 65 (1983) 55 (https://www.ncbi.nlm.nih.gov/pub-med/6606682)

M. Ohno, T. Abe, J. Immunol. Methods. 145 (1991) 199 (https://doi.org/10.1016/0022-1759(91)90327-C)

M. J. Rodríguez-Roque, M. A. Rojas-Graü, P. Elez-Martínez, O. Martín-Belloso, Food Chem. 136 (2013) 206 (https://doi.org/10.1016/j.foodchem.2012.07.115)

B. C. B. Boaventura, R. D. D. M. C. Amboni, E. Da Silva, E. S. Prudencio, P. F. Di Petro, L. G. Malta, R. M. Polinati, R. H. Liu, Food. Res. Int. 77 (2015) (https://doi.org/10.1016/-j.foodres.2015.05.004)

A. Cilla, A. Gonzalez-Sarrias, F. A. Tomas-Barberan, J. C. Espin, R. Barbera, Food Chem. 114 (2009) 813 (https://doi.org/10.1016/j.foodchem.2008.10.019)

K. Fernández, J. Labra, Food Chem. 139 (2013) 196 (https://doi.org/10.1016/j.food-chem.2013.01.021)

C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez, Am. J. Clin. Nutr. 79 (2004) 727 (https://doi.org/10.1093/ajcn/79.5.727)

M. J. Bermúdez-Soto, F. A. Tomás-Barberan, M. T. García-Conesa, Food Chem. 102 (2007) 865 (https://doi.org/10.1016/j.foodchem.2006.06.025)

J. Boyer, R. H. Liu, Nutr. J. 3 (2004) 1 (https://doi.org/10.1186/1475-2891-3-5)

X. Li, J. Y. Zhang, V. V. Y. Gao, H. Y. Wang, J. G. Cao, L. Q. Huang, J. Agric. Food Chem. 60 (2012) 8738 (https://doi.org/10.1021/jf303235h)

V. H. P. Rupasinghe, A. P. K. Joshi, Dried Fruits. Phytochemicals and Health Effects, John Wiley & Sons, Oxford, 2013, p. 211-225 (https://doi.org/10.1002/9781118464663)

L. Siracusa, T. Kulisic-Bilusic, O. Politeo, I. Krause, B. Dejanović, G. Ruberto, J. Agric. Food Chem. 59 (2012) 12453 (https://doi.org/10.1021/jf203096q)

C. Dupas, A. M. Baglieri, C. Ordonand, D. Tomé, M. N. Maillard, Mol. Nutr. Food Res. 50 (2006) 1053 (https://doi.org/10.1002/mnfr.200600034)

J. Bouayed, L. Hoffmann, T. Bohn, Food Chem. 128 (2012) 14 (https://doi.org/10.1016/j.foodchem.2011.02.052)

N. Isik, B. Alteheld, S. Kühu, N. Schulzu-Kausers, B. Kunz, H. R. Wollseifen, P. Stehle, S. Lesser, Food Res. Int. 65 (2015) 109 (https://doi.org/10.1016/j.foodres.2014.02.012)

P. C. Hollman, M. B. Katan, Biomed. Pharmacother. 51 (1997) 305 (https://doi.org/10.1016/S0753-3322(97)88045-6)

X. Wang, Y. Ouyang, J. Liu, M. Zhu, G. Zhao, W. Bao, F. B. Hu, BMJ. 349 (2014) g4490 (https://doi.org/10.1136/bmj.g4490)

C. Gerhauser, Planta Med. 74 (2008) 1608 (https://doi.org/10.1055/s-0028-1088300)

G. S. Cetković, S. M. Savatovic, J. M. Canadanovic-Brunet, D. D. Cetojevic-Simin, S. M. Djilas, V. T. Tumbas, M. Skerget, J. BUON. 16 (2011) 147 (https://www.ncbi.nlm.nih.gov/pubmed/21674867)

F. Li, S. Li, H. B. Li, G. F. Deng, W. H. Ling, X. R. Xu, Food Funct. 4 (2013) 530 (https://doi.org/10.1039/c2fo30252g)

I. Seiquer, A. Rueda, M. Olalla, C. Cabrera-Vique, Food. Chem. 188 (2015) 496 (https://doi.org/10.1016/j.foodchem.2015.05.006)

P. Costa, T. Grevenstuk, A. M. R. Da Costa, S. Gonçalves, A. Romana, Ind. Crop. Prod. 55 (2014) 83 (https://doi.org/10.1016/j.indcrop.2014.01.049)

W. Chen, H. Su, Y. Xu, T. Bao, X. Zheng, Food Chem. 96 (2016) 943 (https://doi.org/10.1016/j.foodchem.2015.10.024)

L. Silva, F. Shahidi, M. A. Coimbra, Dried Fruits. Phytochemicals and Health Effects, John Wiley & Sons, Oxford, 2013, p. 325-356 (https://doi.org/10.1002/9781118464663)

Published

2018-12-29

How to Cite

[1]
J. Živković, K. Savikin, N. Stanisavljević, G. Zdunić, T. Stanojković, and J. Samardžić, “Chemical composition and antiproliferative potential of dried wild apple and pear tea before and after in vitro simulated digestion”, J. Serb. Chem. Soc., vol. 83, no. 12, pp. 1315-1326, Dec. 2018.

Issue

Section

Biochemistry & Biotechnology

Most read articles by the same author(s)