HPTLC-direct bioautography-guided isolation of isogeranic acid as the main antibacterial constituent of Artemisia santonicum essential oil

Main Article Content

Jovana Stanković
Miroslav Novaković
Vele Tešević
Ana Ćirić
Marina Soković
Gordana Zdunić
Zora Dajić-Stevanović
Dejan Gođevac

Abstract

This study was performed to determine the main antibacterial com­po­unds of the essential oil (ЕО) of saltmarsh plant Artemisia santonicum (Aster­aceae). The combination of HPTLC and direct bioautography was used for the activity guided isolation of isogeranic acid as the main antibacterial constituent with remarkable antimicrobial activity, although it was the minor component of the EO, present only in 0.2 %, as calculated from GC/FID. Its structure was deter­mined by 1D- and 2D-NMR and GC–MS techniques. Antibacterial acti­vity of isogeranic acid against all tested bacteria was significantly higher than EO and even than both controls streptomycin and ampicillin. In further inves­tigation of antibiofilm and antiquorum sensing activity EO exhibited the best inhibition of the biofilm formation at 1/8 minimal inhibitory concentration (MIC) and iso­geranic acid at 1/2 MIC. Both EO and isogeranic acid possessed pyocyanin inhibitory activity showing the reduction of pigment at 60.6 and 62.8 %, res­pect­ively, at 1/2 MIC concentrations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Stanković, “HPTLC-direct bioautography-guided isolation of isogeranic acid as the main antibacterial constituent of Artemisia santonicum essential oil”, J. Serb. Chem. Soc., vol. 84, no. 12, pp. 1355–1365, Jan. 2020.
Section
Organic Chemistry

References

M. J. Abad, L. M. Bedoya, L. Apaza, P. Bermejo, Molecules 17 (2012) 2542 (https://doi.org/10.3390/molecules17032542)

W. Megdiche-Ksouri, N. Trabelsi, K. Mkadmini, S. Bourgou, A. Noumi, M. Snoussi, R. Barbria, O. Tebourbi, R. Ksouri, Ind. Crops Prod. 63 (2015) 104 (https://doi.org/10.1016/j.indcrop.2014.10.029)

E. Konstat-Korzenny, J. A. Ascencio-Aragón, S. Niezen-Lugo, R. Vázquez-López, Med. Sci. (Basel) 6 (2018) 2 (https://doi.org/10.3390/medsci6010019)

F. Dadasoglu, R. Kotan, A. Cakir, R. Cakmakci, S. Kordali, H. Ozer, K. Karagoz, N. Dikbas, Fresenius Environ. Bull. 24 (2015) 2715 (https://www.researchgate.net/publication/292392124_Antibacterial_activities_of_essential_oils_extracts_and_some_of_their_major_components_of_Artemisia_spp_L_against_seed-borne_plant_pathogenic_bacteria)

C. Toniolo, M. Nicoletti, F. Maggi, A. Venditti, Nat. Prod. Res. 28 (2014) 119 (https://doi.org/10.1080/14786419.2013.852546)

M. Simões, L.C. Simões, M.J. Vieira, Int. J. Food Microbiol. 128 (2008) 309 (https://doi.org/10.1016/j.ijfoodmicro.2008.09.003)

P. Thakur, R. Chawla, A. Tanwar, S. A. Chakotiya, A. Narula, R. Goel, R. Arora, K. R. Sharma, Microb. Pathog. 92, (2016) 76 (https://doi.org/10.1016/j.micpath.2016.01.001)

B. LaSarre, J. M. Federle, Microbiol. Mol. Biol. Rev. 77 (2013) 73 (https://doi.org/10.1128/MMBR.00046-12)

A. D. Rasko, V. Sperandio, Nat. Rev. Drug Discovery 9 (2010) 117 (https://doi.org/10.1038/nrd3013)

T. Bjarnsholt, APMIS, Suppl. 121 (2013) 1 (https://doi.org/10.1111/apm.12099)

V. Aloush, S. Navon-Venezia, Y. Seigman-Igra, S. Cabili, Y. Carmeli, Antimicrob. Agents Chemother. 50 (2006) 43 (https://doi.org/10.1128/AAC.50.1.43-48.2006)

H. Wagner, S. Bladt, E. M. Zgainski, Plant Drug Analysis, Springer-Verlag, Heidelberg, 1984 (https://doi.org/10.1007/978-3-662-02398-3)

G. Horváth, N. Jámbor, A. Végh, A. Böszörményi, É. Lemberkovics, É. Héthelyi, K. Kovács, B. Kocsis, Flavour Fragrance J. 25 (2010) 178 (https://doi.org/10.1002/ffj.1993)

Clinical and Laboratory Standards Institute (2009), Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 8th ed., CLSI publication M07-A8, Clinical and Laboratory Standards Institute, Wayne, PA (https:// //simpleshowoflove.weebly.com/uploads/1/4/0/7/14073276/agar_dilution_assay.pdf)

T. Tsukatani, H. Suenaga, M. Shiga, K. Noguchi, M. Ishiyama, T. Ezoe, K. Matsumoto, J. Microbiol. Methods 90 (2012) 160 (https://doi.org/10.1016/j.mimet.2012.05.001)

K. Rasheda, A. Ćirić, J. Glamočlija, R. C. Calhelha, I. C. F. R. Ferreira, M. Soković, Ind. Crops Prod. 59 (2014) 189 (https://doi.org/10.1016/j.indcrop.2014.05.017)

K. S. Mileski, A. D. Ćirić, D. J. Petrović, M. S. Ristić, V. S. Matevski, P. D. Marin, A. M. Džamić, J. Appl. Bot. Food Qual. 90 (2017) 330 (https://doi.org/10.5073/JABFQ.2017.090.041)

S. M. Sandy, T. Foong-Yee, Malays. J. Microbiol. 8 (2012) 11 (http://dx.doi.org/10.21161/mjm.34911)

M. L. Badea, E. Delian, Rom. Biotechnol. Lett. 19 (2014) 9345 (https://www.rombio.eu/vol19nr3/lucr%208_Badea%20Monica,%20Delian%20Elena%20RBL%20corectat_%20rec%205%20dec%202013ac%2013%20Jan%202014.pdf)

P. Weyerstahl, V. K. Kaul, M. Weirauch, H. Marschall-Weyerstahl, Planta Med. 53 (1987) 66 (https://doi.org/10.1055/s-2006-962623)

N. Asfaw, H. J. Storesund, A. J. Aasen, L. Skattebol, J. Essent. Oil Res. 15 (2003) 102 (https://doi.org/10.1080/10412905.2003.9712081)

M. Soković, A. Ćirić, J. Glamočlija, M. Nikolić, L. J. van Griensven, Molecules 19 (2014) 4189 (https://doi.org/10.3390/molecules19044189).

Most read articles by the same author(s)

1 2 > >>