HPTLC Bioautography-Guided Isolation of Isogeranic Acid as the Main Antibacterial Constituent of Artemisia santonicum Essential Oil

Jovana Stanković, Miroslav Novaković, Vele Tešević, Ana Ćirić, Marina Soković, Gordana Zdunić, Zora Dajić-Stevanović, Dejan Gođevac

Abstract


This study was performed to determine the main antibacterial com­po­unds of the essential oil of saltmarsh plant Artemisia santonicum (Asteraceae). The combination of HPTLC and direct bioautography was used for the activity guided isolation of isogeranic acid as the main antibacterial constituent with remarkable antimicrobial activity, although it was the minor component of the EO present only in 0.2 %, as calculated from GC/FID. Its structure was determined by 1D, 2D NMR and GC-MS techniques. Antibacterial activity of isogeranic acid against all tested bacteria was significantly higher than EO and even than both controls streptomycin and ampicillin. In further investigation of antibiofilm and antiquorum sensing activity EO exhibited the best inhibition of the biofilm formation at 1/8 MIC and isogeranic acid at 1/2 MIC. Both EO and isogeranic acid possessed pyocyanin inhibitory activity showing the reduction of pigment at 60.6 and 62.8 %, respectively, at 1/2 MIC concentrations.


Keywords


antimicrobial activity, direct bioautography, antibiofilm, antiquorum potential

Full Text:

PDF (1,869 kB)

References


M. J. Abad, L. M. Bedoya, L. Apaza, P. Bermejo, Molecules 17 (2012) 2542 (https://doi.org/10.3390/molecules17032542)

W. Megdiche-Ksouri, N. Trabelsi, K. Mkadmini, S. Bourgou, A. Noumi, M. Snoussi, R. Barbria, O. Tebourbi, R. Ksouri, Ind. Crops. Prod. 63 (2015) 104 (https://doi.org/10.1016/j.indcrop.2014.10.029)

E. Konstat-Korzenny, J. A. Ascencio-Aragón, S. Niezen-Lugo, R. Vázquez-López, Med. Sci. (Basel) 6 (2018) 2 (https://doi.org/10.3390/medsci6010019)

F. Dadasoglu, R. Kotan, A. Cakir, R. Cakmakci, S. Kordali, H. Ozer, K. Karagoz, N. Dikbas. Fresen. Environ. Bull. 24 (2015) 2715 (https://www.researchgate.net/publication/292392124_Antibacterial_activities_of_essential_oils_extracts_and_some_of_their_major_components_of_Artemisia_spp_L_against_seed-borne_plant_pathogenic_bacteria)

C. Toniolo, M. Nicoletti, F. Maggi, A. Venditti, Nat. Prod. Res. 28 (2014) 119 (https://doi.org/10.1080/14786419.2013.852546)

M. Simões, L.C. Simões, M.J. Vieira, Int. J. Food Microbiol. 128 (2008) 309 (https://doi.org/10.1016/j.ijfoodmicro.2008.09.003)

P. Thakur, R. Chawla, A. Tanwar, S. A. Chakotiya, A. Narula, R. Goel, R. Arora, K. R. Sharma, Microb. Pathog. 92, (2016) 76 (https://doi.org/10.1016/j.micpath.2016.01.001)

B. LaSarre, J. M. Federle,. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. R. 77 (2013) 73 (https://doi.org/10.1128/MMBR.00046-12)

A. D. Rasko, V. Sperandio, Nat. Rev. Drug Discov. 9 (2010) 117 (https://doi.org/10.1038/nrd3013)

T. Bjarnsholt,. The role of bacterial biofilms in chronic infections. APMIS. Suppl. 121 (2013) 1 (https://doi.org/10.1111/apm.12099)

V. Aloush, S. Navon-Venezia, Y. Seigman-Igra, S. Cabili, Y. Carmeli, Antimicrob. Agents Chemother. 50 (2006) 43 (https://doi.org/10.1128/AAC.50.1.43-48.2006)

H. Wagner, S. Bladt, E. M. Zgainski, Plant Drug Analysis, Springer-Verlag, Berlin, Heidelberg, 1984 (https://doi.org/10.1007/978-3-662-02398-3)

G. Horváth, N. Jámbor, A. Végh, A. Böszörményi, É. Lemberkovics, É. Héthelyi, K. Kovács, B. Kocsis, Flavour Frag. J. 25 (2010) 178 (https://doi.org/10.1002/ffj.1993)

Clinical and Laboratory Standards Institute (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 8th ed. CLSI publication M07-A8. Clinical and Laboratory Standards Institute, Wayne, PA. (https://simpleshowoflove.weebly.com/uploads/1/4/0/7/14073276/agar_dilution_assay.pdf)

T. Tsukatani, H. Suenaga, M. Shiga, K. Noguchi, M. Ishiyama, T. Ezoe, K. Matsumoto, J. Microbiol. Methods 90 (2012) 160 (https://doi.org/10.1016/j.mimet.2012.05.001)

K. Rasheda, A. Ćirić, J. Glamočlija, R. C. Calhelha, I. C. F. R. Ferreira, M. Soković, Ind. Crops Prod. 59 (2014) 189 (https://doi.org/10.1016/j.indcrop.2014.05.017)

K. S. Mileski, A. D. Ćirić, D. J. Petrović, M. S. Ristić, V. S. Matevski, P. D. Marin, A. M. Džamić. J. Appl. Bot. Food Qual. 90 (2017) 330 (https://doi.org/10.5073/JABFQ.2017.090.041)

S. M. Sandy, T. Foong-Yee, Malaysian J. Microb. 8 (2012) 11 (http://dx.doi.org/10.21161/mjm.34911)

M. L. Badea, E. Delian, Rom. Biotech. Lett. 19 (2014) 9345 (https://www.rombio.eu/vol19nr3/lucr%208_Badea%20Monica,%20Delian%20Elena%20RBL%20corectat_%20rec%205%20dec%202013ac%2013%20Jan%202014.pdf)

P. Weyerstahl, V. K. Kaul, M. Weirauch, H. Marschall-Weyerstahl, Planta Med. 53 (1987) 66 (https://doi.org/10.1055/s-2006-962623)

N. Asfaw, H. J. Storesund, A. J. Aasen, L. Skattebol, J. Essen. Oil Res. 15 (2003) 102 (https://doi.org/10.1080/10412905.2003.9712081)

M. Soković, A. Ćirić, J. Glamočlija, M. Nikolić, L. J. van Griensven, Molecules 19 (2014) 4189 (https://doi.org/10.3390/molecules19044189)




DOI: https://doi.org/10.2298/JSC190513106S

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)