Electrocatalytic hydrogen evolution upon reduction of pyridoxal semicarbazone and thiosemicarbazone-based Cu(II) complexes Scientific paper

Main Article Content

Salma Al-Zahrani
https://orcid.org/0000-0002-8738-9455
Violeta Jevtović
https://orcid.org/0000-0002-2180-8303
Khalaf Alenezi
https://orcid.org/0000-0002-8482-2110
Hani Moll
https://orcid.org/0000-0003-4843-5006
Ashanul Haque
https://orcid.org/0000-0002-6780-632X
Dragoslav Vidović
https://orcid.org/0000-0003-4269-3995

Abstract

The growing global demand for renewable energy sources has pushed renewable, green energy sources to the forefront, among which the production of hydrogen gas from water occupies a significant place. To realize this goal, researchers across the globe are developing various systems that could swiftly catalyze the hydrogen evolution reaction (HER) in the highest possible yield. In the present work, the electrocatalytic HER performances of pyridoxal semi­carbazone- and thiosemicarbazone-based Cu(II) complexes, i.e., ([Cu(PLSC)Cl2] and [Cu(PLTSC-H)H2O]Br·H2O) are reported. It has been unambiguously demonstrated that the complexes exhibit enviable level of HER catalytic act­ivity. The catalytic activity of the complexes was not only the function of cen­tral metal but it was also controlled by the nature of the coor­dinating ligand.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Al-Zahrani, V. Jevtović, K. Alenezi, H. Moll, A. Haque, and D. Vidović, “Electrocatalytic hydrogen evolution upon reduction of pyridoxal semicarbazone and thiosemicarbazone-based Cu(II) complexes: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 3, pp. 345–354, Oct. 2021.
Section
Electrochemistry

References

J. Zhu, L. Hu, P. Zhao, L. Lee, K. Wong, Chem. Rev. 120 (2020) 851 (https://doi.org/10.1021/acs.chemrev.9b00248)

J. Yu, Y. Dai, Q He, D. Zhao, Z. Shao, M. Ni, MRE 120 (2021)100024 (https://doi.org/10.1016/j.matre.2021.100024

Y. She, Z. Lyu, M. Zhao, R. Chen, Q. Nguyen, Y. Xia, Chem. Rev. 121 (2021) 649 (https://doi.org/10.1021/acs.chemrev.0c00454)

Z. Zhou, Z. Pei, L. Wei, S. Zhao, X. Jian,Y. Chen, Energy Environ. Sci. 13 (2020) 3185 (https://doi.org/10.1039/D0EE01856B)

S. Roy, Z. Huang, A. Buhunia, A. Castner, A. Gupta, X. Zou, S. Ott, J. Am. Chem. Soc. 141 (2019) 15942 (https://doi.org/10.1021/jacs.9b07084)

C. Chen, T. Chiou, H. Chang, W. Li, C. Tung, W. Liaw, Sustain. Energy Fuels 3 (2019) 2205 (https://doi.org/10.1039/C9SE00371A)

N. Cheng, S. Stambula, D. Wang, M. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. Sham, L. Liu, G. Botton, X. Sun, Nat. Commun. 7 (2016) 13638 (https://doi.org/10.1038/ncomms13638)

H. Tang, E. N. Brothers, C. A. Grapperhaus, M. B. Hall, ACS Catal. 10 (2020) 3778 (https://doi.org/10.1021/acscatal.9b04579)

H. Shao, S. K. Muduli, P. D. Tran, H. S. Soo, Chem. Commun. 52 (2016) 2948 (https://doi.org/10.1039/C5CC09456A)

A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M. Buchanan, C. A. Grapperhaus, J. Am. Chem. Soc. 138, 25 (2016) 7844 (https://doi.org/10.1021/jacs.6b04441)

V. Jevtovic, Cu, Fe, Ni and V Complexes with Pyridoxal Semicarbazones, Lap Lambert Publication, Saarbrücken, 2010 (https://www.amazon.com/complexes-pyridoxal-semicarbazones-properties-structural/dp/3838351339)

V. M. Leovac, V. S. Jevtovic, L. S. Jovanovic,G. A. Bogdanovic, J. Serb. Chem. Soc. 70 (2005) 423 (https://doi.org/10.2298/JSC0503393L)

S.AShidhani, M. Al Bouromi, S. Al Ameri, S. Al Ghawi, V. Jevtovic, Am. J. Chem. 6 (2016) 8 (https://doi.org/10.5923/j.chemistry.20160601.02)

V. Jevtovic, D. Vidovic, Acta Cryst., E 66(Pt.4) (2010) 408 (https://doi.org/10.1107/S1600536810003570)

V. Jevtovic, D. Cvetkovic, D. Vidovic, JICS 8 (2011)727 (https://doi.org/10.1007/BF03245904)

D. Vidovic, A. Radulovic,V. Jevtovic, Polyhedron 30 (2011) 16 (https://doi.org/10.1016/j.poly.2010.09.022)

N. Knezevic,V. Leovac,V. Jevtovic, S. Grguric-Sipka, T. Sabo, Inorg. Chem. Comm. 6 (2003) 561 (https://doi.org/10.1016/S1387-7003(03)00041-8)

R. Manikandan, P. Anitha, G. Prakash, P. Vijayan, P. Viswanathamurthi, Polyhedron 81 (2014) 619 (https://doi.org/10.1016/j.poly.2014.07.018)

R. Manikandan, P. Anitha, P. Viswanathamurthi, J. G. Maleck, Polyhedron 119 (2016) 300 (https://doi.org/10.1016/j.poly.2016.09.005)

R. Manikandana, P. Anithaa, G. Prakasha, P. Vijayana, P. Viswanathamurthi, R. Jay Butcher,J. G. Malecki, J. Mol. Catal., A 398 (2015) 312 (https://doi.org/10.1016/j.poly.2016.09.005)

J. Pisk, B. Prugovecki, D. Matkovic-Calogović, R. Poli, D. Agustin ,V. Vrdoljak, Polyhedron 33 (2012) 441 (https://doi.org/10.1016/j.poly.2011.12.003)

D. Perrin, W. Armarego, D. Perrin, Purification of Laboratory Chemicals, Pergamon, New York, 1988 (https://doi.org/10.1002/recl.19881071209)

V. Jevtovic, K. Alenezi, H. El Moll, A. Haque, J. Humaidi, S. A. Al-Zahrani, D. Vidovic, Int. J. Electrochem. Sci. 16 (2021) 210731 (https://doi.org/10.20964/2021.07.61)

T. Liu, D. L. Du Bois, R. M. Bullock, Nat. Chem. 5 (2013) 228 (https://doi.org/10.1038/nchem.1571)

B. H. Solis, S. Hammes-Schiffer, Inorg. Chem. 53 (2014) 6427 https://doi.org/10.1021/ic5002896

M. Drosou, F. Kamatsos, C. A. Mitsopoulou, Inorg. Chem. Front. 7 (2020) 37 (https://doi.org/10.1039/C9QI01113G).

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.