Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers Scientific paper

Main Article Content

Marijana Ponjavić
https://orcid.org/0000-0003-0264-8639
Marija S. Nikolić
https://orcid.org/0000-0001-9594-9101
Sanja Jevtić
https://orcid.org/0000-0003-1870-1553
Sanja Jeremić
https://orcid.org/0000-0002-6661-385X
Lidija Đokić
https://orcid.org/0000-0003-4723-0527
Jasna Đonlagić
https://orcid.org/0000-0002-8394-7560

Abstract

The present study reports the potential application of star-shaped poly(ε-caprolactones) with different number of arms as new drug delivery mat­rix. Linear and star-shaped PCL ibuprofen loaded microspheres were prepared using oil-in-water (o/w) solvent evaporation technique and characterized with FTIR, DSC, XRD and SEM analysis. High yield, encapsulation efficiency and drug loadings were obtained for all microspheres. FTIR analysis revealed the existence of interactions between polymer matrix and drug, while the DSC ana­lysis suggested that drug was encapsulated in an amorphous form. SEM ana­lysis confirmed that regular, spherical in shape star-shaped microspheres, with diameter between 80 and 90 μm, were obtained, while quite larger micro­spheres, 110 μm, were pre­pared from linear PCL. The advantage of using star-shaped PCL microspheres in­stead of linear PCL was seen from drug release profiles which demonstrated higher amount of drug released from star-shaped polymer matrix as a consequence of their branched, flexible structure. Micro­spheres prepared from the polymers with the most branched structure showed the highest amount of the released drug after 24 h. Finally, cytotoxicity tests, performed using normal human fibroblasts (MRC5), indicated the absence of cytotoxicity at lower concentrations of microspheres proving the great potential of star-shaped PCL systems in comparison to linear ones.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Ponjavić, M. S. Nikolić, S. Jevtić, S. Jeremić, L. Đokić, and J. Đonlagić, “Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 9, pp. 1075–1090, Jul. 2022.
Section
Polymers

Funding data

References

A. K. Bajpai, S. K. Shukla, S. Bhanu, S. Kankane, Prog. Polym. Sci. 33 (2008) 1088 (http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005)

W. Wu, W. Wang, J. Li, Prog. Polym. Sci. 46 (2015) 55 (https://doi.org/10.1016/j.progpolymsci.2015.02.002)

J. M. Ren, T. G. McKenzie, Q. Fu, E. H. H. Wong, J. Xu, Z. An, S. Shanmugam, T. P. Davis, C. Boyer, G. G. Qiao, Chem. Rev. 116 (2016) 6743 (https://doi.org/10.1021/acs.chemrev.6b00008)

C. Englert, J. C. Brendel, T. C. Majdanski, T. Yildirim, S. Schubert, M. Gottschaldt, N. Windhab, U. S. Schubert, Prog. Polym. Sci. 87 (2018) 107 (https://doi.org/10.1016/j.progpolymsci.2018.07.005)

D. J. A. Cameron, M. P. Shaver, Chem. Soc. Rev. 40 (2011) 1761 (https://doi.org/10.1039/c0cs00091d)

K. Khanna, S. Varshney, A. Kakkar, Polym. Chem.-U.K. 1 (2010) 1171 (https://doi.org/10.1039/C0PY00082E)

M. Hadjianfar, D. Semnani, J. Varshosaz, Polym. Advan. Technol. 29 (2018) 2972 (https://doi.org/10.1002/pat.4417)

M. A. Woodruff, D. W. Hutmacher, Prog. Polym. Sci. 35 (2010) 1217 (https://doi.org/10.1016/j.progpolymsci.2010.04.002)

J. L. Wang, L. Wang, C. M. Dong, J. Polym. Sci. Pol. Chem. 43 (2005) 5449 (https://doi.org/10.1002/pola.20954)

A. Michalski, M. Brzezinski, G. Lapienis, T. Biela, Prog. Polym. Sci. 89 (2019) 159 (https://doi.org/10.1016/j.progpolymsci.2018.10.004)

M. Lang, R. P. Wong, C. C. Chu, J. Polym. Sci. Pol. Chem. 40 (2002) 1127 (https://doi.org/10.1002/pola.10171)

M. R. Nabid, S. J. Tabatabaei Rezaei, R. Sedghi, H. Niknejad, A. A. Entezami, H. A. Oskooie, M. M. Heravi, Polymer 52 (2011) 2799 (https://doi.org/10.1016/j.polymer.2011.04.054)

H. J. Lim, H. Lee, K. H. Kim, J. Huh, C. H. Ahn, J. W. Kim, Colloid. Polym. Sci. 291 (2013) 1817 (https://doi.org/10.1007/s00396-013-2916-y)

S. Petrova, S. Miloshev, M. D. Apostolova, R. Mateva, J. Mater. Sci.-Mater. Med. 23 (2012) 1225 (https://doi.org/10.1007/s10856-012-4592-8)

F. Quaglia, L. Ostacolo, G. De Rosa, M. I. La Rotonda, M. Ammendola, G. Nese, G. Maglio, R. Palumbo, C. Vauthier, Int. J. Pharmaceut. 324 (2006) 56 (https://doi.org/10.1016/j.ijpharm.2006.07.020)

K. S. Shalaby, M. E. Soliman, G. Bonacucina, M. Cespi, G. F. Palmieri, O. A. Sammour, A. A. El Shamy, L. Illum, L. Casettari, Pharm. Res.-DORDR 33 (2016) 2010 (https://doi.org/10.1007/s11095-016-1939-8)

C. D. Brabander, C. Vervaet, L. V. Bortel, J. P. Remon, Int. J. Pharmaceut. 271 (2004) 77 (https://doi.org/10.1016/j.ijpharm.2003.10.029)

N. Carreras, V. Acuña, M. Martí, M. J. Lis, Colloid. Polym. Sci. 291 (2013) 157 (https://doi.org/10.1007/s00396-012-2768-x)

G. V. Salmoria, F. Sibilia, I. M. Gindri, C. R. M. Roesler, S. Farè, M. C. Tanzi, Polym. Test. 62 (2017) 33 (https://doi.org/10.1016/j.polymertesting.2017.06.009)

T. Shpigel, G. Cohen Taguri, D. Y. Lewitus, J. Appl. Polym. Sci. 136 (2019) 47227 (https://doi.org/10.1002/app.47227)

M. Ponjavic, M. S. Nikolic, J. Nikodinovic-Runic, T. Ilic-Tomic, J. Djonlagic, Int. J. Polym. Mater. PO 68 (2019) 308 (https://doi.org/10.1080/00914037.2018.1445631)

M. Ponjavic, M. S. Nikolic, S. Stevanovic, J. Nikodinovic-Runic, S. Jeremic, A. Pavic, J. Djonlagic, J. Bioact. Compat. Pol. 35 (2020) 517 (https://doi.org/10.1177/0883911520951826)

D. Pepic, M. S. Nikolic, S. Grujic, M. Lausevic, J. Djonlagic, J. Microencapsul. 30 (2013) 151 (https://doi.org/10.3109/02652048.2012.704954)

M. B. Hansen, S.E. Nielsen, K. Berg, J. Immunol. Methods 119 (1989) 203 (https://doi.org/10.1016/0022-17598990397-9)

M. Jaiswal, V. Koul, J. Biomater. Appl. 27 (2013) 848 (https://doi.org/10.1177/0885328211428524)

Y. Jiang, K. Mao, X. Cai, S. Lai, X. Chen, J. Appl. Polym. Sci. 122 (2011) 2309 (https://doi.org/10.1002/app.34382)

K. J. Zhu, Y. Li, H. L. Jiang, H. Yasuda, A. Ichimaru, K. Yamamoto, P. Lecomte, R. Jerome, J. Microencapsul. 22 (2005) 25 (https://doi.org/10.1080/02652040400026350)

D. Bikiaris, G. Z. Papageorgiou, A. Stergiou, E. Pavlidou, E. Karavas, F. Kanaze, M. Georgarakis, Thermochim. Acta 439 (2005) 58 (https://doi.org/10.1016/j.tca.2005.09.011)

J. Bidone, A. P. P. Melo, G. C. Bazzo, F. Carmignan, M. S. Soldi, A. T. N. Pires, E. Lemos-Senna, Mater. Sci. Eng., C 29 (2009) 588 (https://doi.org/10.1016/j.msec.2008.10.016)

A. Baji, S. C. Wong, T. Liu, T. Li, T. S. Srivatsan, J. Biomed. Mater. Res., B 81 (2007) 343 (https://doi.org/10.1002/jbm.b.30671)

S. Freiberg, X. X. Zhu, Int. J. Pharmaceut. 282 (2004) 1 (https://doi.org/10.1016/j.ijpharm.2004.04.013)

C. Koulouktsi, S. Nanaki, P. Barmpalexis, M. Kostoglou, D. Bikiaris, Int. J. Pharmaceut. 1 (2019) 100014 (https://doi.org/10.1016/j.ijpx.2019.100014)

P. Costa, J. M. Sousa Lobo, Eur. J. Pharm. Sci. 13 (2001) 123 (https://doi.org/10.1016/s0928-09870100095-1)

C. J. Thompson, D. Hansford, S. Higgins, C. Rostron, G.A. Hutcheon, D.L. Munday, Int. J.Pharmaceut. 329 (2007) 53 (https://doi.org/10.1016/j.ijpharm.2006.08.019)

M. C. Serrano, R. Pagani, M. Vallet-Regı́, J. Peña, A. Rámila, I. Izquierdo, M. T. Portolés, Biomaterials 25 (2004) 5603 (https://doi.org/10.1016/j.biomaterials.2004.01.037).

Most read articles by the same author(s)