Thermo-responsive hydrogels based on poly(N-isopropylacrylamide) and hyaluronic acid cross-linked with nanoclays

Ilinka Mirković, Marija S. Nikolić, Sanja Ostojić, Jelena Maletaškić, Zoran Petrović, Jasna Djonlagić

Abstract


The semi-interpenetrating polymer networks (SIPN) based on thermo-responsive poly(N-isopropylacrylamide) (PNIPA) and water-soluble sodium salts of linear hyaluronic acid (Na-HA), were physically cross-linked with synthetic nanoclay (Laponite XLG). PNIPA hydrogels with different cross-linking densities and Na-HA concentrations were synthesized by in-situ free-radical redox polymerization. The structure and heterogeneity of the semi-IPN hydrogels was examined by SEM and XRD. The content of clay incorporated in the gel was determined by TGA. DSC measurements showed that volume phase transition temperature and its enthalpy varied with the clay and hyaluronic acid content. SIPN hydrogels, containing negatively charged polyelectrolyte, Na-HA, exhibited higher Qe and faster deswelling rates than corresponding PNIPA NC hydrogels. The presence of an anionic Na-HA polymer reduced storage modulus, indicating the weakening of the hydrogel network structure, especially at lower clay contents. Nanocomposite hydrogels exhibited high tand values, which increased with increasing Na-HA. 

Keywords


thermo-responsive hydrogels; semi-IPN hydrogels; nanoclay; hyaluronic acid; swelling/deswelling kinetics

Full Text:

PDF (1,970 kB)

References


N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Eur. J. Pharm. Biopharm. 50 (2000) 27 (https://doi.org/10.1016/S0939-6411(00)00090-4)

P. Calvert, Adv. Mater. 21 (2009) 743 (https://doi.org/10.1002/adma.200800534)

N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci‐Unal, M. R. Dokmeci, N. A. Peppas, A. Khademhosseini, Adv. Mater. 26 (2014) 85 (https://doi.org/10.1002/adma.201303233)

K. László, K. Kosik, E. Geissler, Macromolecules 37 (2004) 10067 (https://doi.org/10.1021/ma048363x)

K. Haraguchi, T. Takehisa, Adv. Mater. 14 (2002) 1120 (https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9)

K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromolecules 36 (2003) 5732 (https://doi.org/10.1021/ma034366i)

K. Haraguchi, H.-J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 38 (2005) 3482 (https://doi.org/10.1021/ma047431c)

J. Nie, B. Du, W. Oppermann, Macromolecules 38 (2005) 5729 (https://doi.org/10.1021/ma050589s)

K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 35 (2002) 10162 (https://doi.org/10.1021/ma021301r)

L. Xiong, X. Hu, X. Liu, Z. Tong, Polymer 49 (2008) 5064 (https://doi.org/10.1016/j.polymer.2008.09.021)

T. Wang, D. Liu, C. Lian, S. Zheng, X. Liu, Z. Tong, Soft Matter. 8 (2012) 774 (https://doi.org/10.1039/C1SM06484C)

J. Djonlagic, Z. S. Petrovic, J. Polym. Sci., Part B: Polym. Phys. 42 (2004) 3987 (https://doi.org/10.1002/polb.20247)

J. Djonlagić, D. Žugić, Z. Petrović, J. Appl. Pol. Sci. 124 (2012) 3024 (https://doi.org/10.1002/app.35334)

J. Djonlagic, A. Lancuski, M. S. Nikolic, J. Rogan, S. Ostojic, Z. Petrovic, J. Appl. Pol. Sci. 134 (2017) 44535 (https://doi.org/10.1002/app.44535)

C. M. Paranhos, B. G. Soares, R. N. Oliveira, L. A. Pessan, Macromol. Mater. Eng. 292 (2007) 620 (https://doi.org/10.1002/mame.200700004)

J.-T. Zhang, R. Bhat, K. D. Jandt, Acta Biomater. 5 (2009) 488 (https://doi.org/10.1016/j.actbio.2008.06.012)

L. Song, M. Zhu, Y. Chen, K. Haraguchi, Macromol. Chem. Phys. 209 (2008) 1564 (https://doi.org/10.1002/macp.200800133)

J. Ma, B. Fan, B. Liang, J. Xu, J. Colloid Interface Sci. 341 (2010) 88 (https://doi.org/10.1016/j.jcis.2009.09.024)

J. Ma, Y. Xu, B. Fan, B. Liang, Eur. Polym. J. 43 (2007) 2221 (https://doi.org/10.1016/j.eurpolymj.2007.02.026)

J. Ma, L. Zhang, B. Fan, Y. Xu, B. Liang, J. Polym. Sci., Part B: Polym. Phys. 46 (2008) 1546 (https://doi.org/10.1002/polb.21490)

J. Ma, Y. Xu, Q. Zhang, L. Zha, B. Liang, Colloid. Polym. Sci. 285 (2007) 479 (https://doi.org/10.1007/s00396-006-1581-9)

M. A. Haq, Y. Su, D. Wang, Mater. Sci. Eng., C. 70 (2017) 842 (https://doi.org/10.1016/j.msec.2016.09.081)

E. Fouissac, M. Milas, M. Rinaudo, Macromolecules 26 (1993) 6945 (https://doi.org/10.1021/ma00077a036)

M. K. Cowman, S. Matsuoka, Carbohydr. Res.340 (2005) 791 (https://doi.org/10.1016/j.carres.2005.01.022)

M. D’Este, M. Alini, D. Eglin, Carbohydr. Polym. 90 (2012) 1378 (https://doi.org/10.1016/j.carbpol.2012.07.007)

R. Coronado, S. Pekerar, A. T. Lorenzo, M. A. Sabino, Polym. Bull. 67 (2011) 101 (https://doi.org/10.1007/s00289-010-0407-6)

J. R. Santos, N. M. Alves, J. F. Mano, J. Bioact. Compat. Polym. 25 (2010) 169 (https://doi.org/10.1177/0883911509357863)

A. R. Kim, S. L. Lee, S. N. Park, Int. J. Biol. Macromol. 118 (2018) 731 (https://doi.org/10.1016/j.ijbiomac.2018.06.061)

V. Capella, R. E. Rivero, A. C. Liaudat, L. E. Ibarra, D. A. Roma, F. Alustiza, F. Manas, C. A. Barbero, P. Bosch, C.R. Rivarola, Heliyon 5(4) (2019) 1 (https://doi.org/10.1016/j.heliyon.2019.e01474)

R. E. Rivero, V. Capella, A. C. Liaudat, P. Bosch, C. A. Barbero, N. Rodrigues, C. R. Rivarola, RSC Adv. 10 (2020) 5827 (https://doi.org/10.1039/C9RA08162C)

M. A. Cooperstaein, H. E. Canavan, Biointerphases 8(1) (2013) 19 (https://doi.org/10.1186/1559-4106-8-19)

Z. Guo, S. Li, C. Wang, J. Xu, B. Kirk, J. Wu, Z. Liu, W. Xue, J. Bioact. Compat. Polym. 32 (2017) 17 (https://doi.org/10.1177/0883911516648969)

L. H. Lima, Y. Morales, T. Cabral, J. Ophthalmol. (2016) Article ID 5356371 (https://doi.org/10.1155/2016/5356371)

S. Yogev, A. Shabtay-Orbach, A. Nyska, B. Mizrahi, Toxicol. Pathol. 47(3) (2018) 426 (https://doi.org/10.1177/0192623318810199)

K. Haraguchi, H.-J. Li, Macromolecules 39 (2006) 1898 (https://doi.org/10.1021/ma052468y)

Q. Zhang, L. Chen, Y. Dong, S. Lu, Mater. Sci. Eng. C 33 (2013) 1616 (https://doi.org/10.1016/j.msec.2012.12.096)

N. Kato, Y. Sakai, S. Shibata, Macromolecules 36 (2003) 961 (https://doi.org/10.1021/ma0214198)

P. L. Ritger, N. A. Peppas, J. Controlled Release 5 (1987) 37 (https://doi.org/10.1016/0168-3659(87)90035-6)

Y. Xiang, Z. Peng, D. Chen, Eur. Polym. J. 42 (2006) 2125 (https://doi.org/10.1016/j.eurpolymj.2006.04.003)

K. Haraguchi, Y. Xu, Colloid. Polym. Sci. 290 (2012) 1627 (https://doi.org/10.1007/s00396-012-2694-y)

K. Otake, H. Inomata, M. Konno, S. Saito, Macromolecules 23 (1990) 283 (https://doi.org/10.1021/ma00203a049)

X. Hu, T. Wang, L. Xiong, C. Wang, X.Liu, Z. Tong, Langmuir 26 (2010) 4233 (https://doi.org/10.1021/la903298n)

O. Okay, W. Oppermann, Macomolecules 40 (2007) 3378 (https://doi.org/10.1021/ma062929v)

C. Wu, S. Zhou, Macromolecules 30 (1997) 574 (https://doi.org/10.1021/ma960499a)

B. Strachota, M. Šlouf, J. Hodan, L. Matějka, Colloid. Polym. Sci. 296 (2018) 753 (https://doi.org/10.1007/s00396-018-4289-8)




DOI: https://doi.org/10.2298/JSC200109023M

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)