Thermo-responsive hydrogels based on poly(N-isopropyl-acrylamide) and hyaluronic acid cross-linked with nanoclays

Main Article Content

Ilinka Mirković
Marija S. Nikolić
Sanja Ostojić
Jelena Maletaškić
Zoran Petrović
Jasna Djonlagić

Abstract

Semi-interpenetrating polymer networks (SIPN) based on thermo-responsive poly(N-isopropylacrylamide) (PNIPA) and water-soluble sodium salts of linear hyaluronic acid (Na-HA) were physically cross-linked with syn­thetic nanoclay (laponite XLG). PNIPA hydrogels with different cross-linking densities and Na-HA concentrations were synthesized by in situ free-radical redox polymerization. The structure and heterogeneity of the semi-IPN hydro­gels were examined by SEM and XRD. The content of clay incorporated in the gel was determined by TGA. DSC measurements showed that volume phase transition temperature and its enthalpy varied with the clay and hyaluronic acid content. SIPN hydrogels containing negatively charged polyelectrolyte, Na-HA, exhibited higher Qe and faster deswelling rates than the corresponding PNIPA NC hydrogels. The presence of the anionic Na-HA polymer reduced the storage modulus, indicating a weakening of the hydrogel network structure, especially at lower clay contents. The nanocomposite hydrogels exhibited high tan d values, which increased with increasing Na-HA content.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. Mirković, M. S. Nikolić, S. Ostojić, J. Maletaškić, Z. Petrović, and J. Djonlagić, “Thermo-responsive hydrogels based on poly(N-isopropyl-acrylamide) and hyaluronic acid cross-linked with nanoclays”, J. Serb. Chem. Soc., vol. 85, no. 9, pp. 1197–1221, Sep. 2020.
Section
Polymers

References

N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Eur. J. Pharm. Biopharm. 50 (2000) 27 (https://doi.org/10.1016/S0939-6411(00)00090-4)

P. Calvert, Adv. Mater. 21 (2009) 743 (https://doi.org/10.1002/adma.200800534)

N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci‐Unal, M. R. Dokmeci, N. A. Peppas, A. Khademhosseini, Adv. Mater. 26 (2014) 85 (https://doi.org/10.1002/adma.201303233)

K. László, K. Kosik, E. Geissler, Macromolecules 37 (2004) 10067 (https://doi.org/10.1021/ma048363x)

K. Haraguchi, T. Takehisa, Adv. Mater. 14 (2002) 1120 (https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9)

K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromolecules 36 (2003) 5732 (https://doi.org/10.1021/ma034366i)

K. Haraguchi, H.-J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 38 (2005) 3482 (https://doi.org/10.1021/ma047431c)

J. Nie, B. Du, W. Oppermann, Macromolecules 38 (2005) 5729 (https://doi.org/10.1021/ma050589s)

K. Haraguchi, T. Takehisa, S. Fan, Macromolecules 35 (2002) 10162 (https://doi.org/10.1021/ma021301r)

L. Xiong, X. Hu, X. Liu, Z. Tong, Polymer 49 (2008) 5064 (https://doi.org/10.1016/j.polymer.2008.09.021)

T. Wang, D. Liu, C. Lian, S. Zheng, X. Liu, Z. Tong, Soft Matter. 8 (2012) 774 (https://doi.org/10.1039/C1SM06484C)

J. Djonlagic, Z. S. Petrovic, J. Polym. Sci., B 42 (2004) 3987 (https://doi.org/10.1002/polb.20247)

J. Djonlagić, D. Žugić, Z. Petrović, J. Appl. Pol. Sci. 124 (2012) 3024 (https://doi.org/10.1002/app.35334)

J. Djonlagic, A. Lancuski, M. S. Nikolic, J. Rogan, S. Ostojic, Z. Petrovic, J. Appl. Pol. Sci. 134 (2017) 44535 (https://doi.org/10.1002/app.44535)

C. M. Paranhos, B. G. Soares, R. N. Oliveira, L. A. Pessan, Macromol. Mater. Eng. 292 (2007) 620 (https://doi.org/10.1002/mame.200700004)

J.-T. Zhang, R. Bhat, K. D. Jandt, Acta Biomater. 5 (2009) 488 (https://doi.org/10.1016/j.actbio.2008.06.012)

L. Song, M. Zhu, Y. Chen, K. Haraguchi, Macromol. Chem. Phys. 209 (2008) 1564 (https://doi.org/10.1002/macp.200800133)

J. Ma, B. Fan, B. Liang, J. Xu, J. Colloid Interface Sci. 341 (2010) 88 (https://doi.org/10.1016/j.jcis.2009.09.024)

J. Ma, Y. Xu, B. Fan, B. Liang, Eur. Polym. J. 43 (2007) 2221 (https://doi.org/10.1016/j.eurpolymj.2007.02.026)

J. Ma, L. Zhang, B. Fan, Y. Xu, B. Liang, J. Polym. Sci., B 46 (2008) 1546 (https://doi.org/10.1002/polb.21490)

J. Ma, Y. Xu, Q. Zhang, L. Zha, B. Liang, Colloid Polym. Sci. 285 (2007) 479 (https://doi.org/10.1007/s00396-006-1581-9)

M. A. Haq, Y. Su, D. Wang, Mater. Sci. Eng., C 70 (2017) 842 (https://doi.org/10.1016/j.msec.2016.09.081)

E. Fouissac, M. Milas, M. Rinaudo, Macromolecules 26 (1993) 6945 (https://doi.org/10.1021/ma00077a036)

M. K. Cowman, S. Matsuoka, Carbohydr. Res. 340 (2005) 791 (https://doi.org/10.1016/j.carres.2005.01.022)

M. DEste, M. Alini, D. Eglin, Carbohydr. Polym. 90 (2012) 1378 (https://doi.org/10.1016/j.carbpol.2012.07.007)

R. Coronado, S. Pekerar, A. T. Lorenzo, M. A. Sabino, Polym. Bull. 67 (2011) 101 (https://doi.org/10.1007/s00289-010-0407-6)

J. R. Santos, N. M. Alves, J. F. Mano, J. Bioact. Compat. Polym. 25 (2010) 169 (https://doi.org/10.1177/0883911509357863)

A. R. Kim, S. L. Lee, S. N. Park, Int. J. Biol. Macromol. 118 (2018) 731 (https://doi.org/10.1016/j.ijbiomac.2018.06.061)

V. Capella, R. E. Rivero, A. C. Liaudat, L. E. Ibarra, D. A. Roma, F. Alustiza, F. Manas, C. A. Barbero, P. Bosch, C.R. Rivarola, Heliyon 5 (2019) 1 (https://doi.org/10.1016/j.heliyon.2019.e01474)

R. E. Rivero, V. Capella, A. C. Liaudat, P. Bosch, C. A. Barbero, N. Rodrigues, C. R. Rivarola, RSC Adv. 10 (2020) 5827 (https://doi.org/10.1039/C9RA08162C)

M. A. Cooperstaein, H. E. Canavan, Biointerphases 8 (2013) 19 (https://doi.org/10.1186/1559-4106-8-19)

Z. Guo, S. Li, C. Wang, J. Xu, B. Kirk, J. Wu, Z. Liu, W. Xue, J. Bioact. Compat. Polym. 32 (2017) 17 (https://doi.org/10.1177/0883911516648969)

L. H. Lima, Y. Morales, T. Cabral, J. Ophthalmol. (2016), Article ID 5356371 (https://doi.org/10.1155/2016/5356371)

S. Yogev, A. Shabtay-Orbach, A. Nyska, B. Mizrahi, Toxicol. Pathol. 47 (2018) 426 (https://doi.org/10.1177/0192623318810199)

K. Haraguchi, H.-J. Li, Macromolecules 39 (2006) 1898 (https://doi.org/10.1021/ma052468y)

Q. Zhang, L. Chen, Y. Dong, S. Lu, Mater. Sci. Eng., C 33 (2013) 1616 (https://doi.org/10.1016/j.msec.2012.12.096)

N. Kato, Y. Sakai, S. Shibata, Macromolecules 36 (2003) 961 (https://doi.org/10.1021/ma0214198)

P. L. Ritger, N. A. Peppas, J. Control. Release 5 (1987) 37 (https://doi.org/10.1016/0168-3659(87)90035-6)

Y. Xiang, Z. Peng, D. Chen, Eur. Polym. J. 42 (2006) 2125 (https://doi.org/10.1016/j.eurpolymj.2006.04.003)

K. Haraguchi, Y. Xu, Colloid Polym. Sci. 290 (2012) 1627 (https://doi.org/10.1007/s00396-012-2694-y)

K. Otake, H. Inomata, M. Konno, S. Saito, Macromolecules 23 (1990) 283 (https://doi.org/10.1021/ma00203a049)

X. Hu, T. Wang, L. Xiong, C. Wang, X.Liu, Z. Tong, Langmuir 26 (2010) 4233 (https://doi.org/10.1021/la903298n)

O. Okay, W. Oppermann, Macomolecules 40 (2007) 3378 (https://doi.org/10.1021/ma062929v)

C. Wu, S. Zhou, Macromolecules 30 (1997) 574 (https://doi.org/10.1021/ma960499a)

B. Strachota, M. Šlouf, J. Hodan, L. Matějka, Colloid Polym. Sci. 296 (2018) 753 (https://doi.org/10.1007/s00396-018-4289-8).

Most read articles by the same author(s)