Experimental investigation on the influencing factors of preparing three-phase foam Scientific paper
Main Article Content
Abstract
A three-phase foam is considered one of the promising advanced materials for fighting fires. However, the preparation conditions, cost and effect are key factors for industrial applications. In this study, new three-phase foam systems with fly ash and a complex surfactant are proposed. Five types of surfactants alcohol polyoxyethylene ether sodium sulfate, coconut oil diethanolamine, sodium lauryl sulfate, polyacrylamide and polyether-modified silicone resin emulsion were selected as foaming agents. Through laboratory experiments, the effect on the expansion ratio and foam stability of the surfactant type/concentration, fly ash particle concentration/size and pH were investigated. The foaming condition was determined by numerical optimization. The results of this study may serve as a reference for understanding the preparation of a novel three-phase foam. It is hoped that this work could provide useful guidance for the preparation of efficient three-phase fire-extinguishing foam for the safe guarding of process safety in the field of chemical production, transportation, and storage suitable for drug delivery than Al12P12 and Al12N12 based on their recovery times.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Key Technologies Research and Development Program of Anhui Province
Grant numbers 202004h07020022
References
Y. Zheng, Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, X. Liu, Fuel Process Technol. 208 (2020) 106510 (https://doi.org/10.1016/j.fuproc.2020.106510)
M. Wu, Y. Liang, Y. Zhao, W. Wang, X. Hu, F. Tian, Z. He, Y. Li, T. Liu, Colloids Surfaces, A 629 (2021) 127443 (https://doi.org/10.1016/j.colsurfa.2021.127443)
Z. Jelonek, A. Drobniak, M. Mastalerz, I. Jelonek, Sci. Total Environ. 747 (2020) 141267 (https://doi.org/10.1016/j.scitotenv.2020.141267)
X. Hu, Y. Li, X. He, C. Li, Z. Li, X. Cao, X. Xin, P. Somasundaran, J. Phys. Chem., B 116 (2012) 160 (https://doi.org/10.1021/jp205753w)
M. Simjoo, Q. P. Nguyen, P. L. J. Zitha, Ind. Eng. Chem. Res. 51 (2012) 10225 (https://doi.org/10.1021/ie202218z)
Q. Liu, S. Zhang, D. Sun, J. Xu, Colloids Surfaces, A 355 (2010) 151 (https://doi.org/10.1016/j.colsurfa.2009.12.003)
L. La Fosse, M. Cummins, Coal Peat Fires: Global Perspect. 1 (2011) 327 (https://doi.org/10.1016/B978-0-444-52858-2.00019-0)
Y. Li, G. Xiao, C. Chen, C. Chen, F. Li, F. Li, L. Lin, Colloids Surfaces, A 627 (2021) 127147 (https://doi.org/10.1016/j.colsurfa.2021.127147)
P. Sobolciak, A. Popelka, A. Tanvir, M. A. Al-Maadeed, S. Adham, I. Krupa, Water 13 (2021) 652 (https://doi.org/10.3390/w13050652)
R. Rafati, A. S. Haddad, H. Hamidi, Colloids Surfaces, A 509 (2016) 19 (https://doi.org/10.1016/j.colsurfa.2016.08.087)
W. P. Yang, T. F. Wang, Z. X. Fan, Q. Miao, Z. Y. Deng, Y. Y. Zhu, Energy Fuels 31 (2017) 4721 (https://doi.org/10.1021/acs.energyfuels.6b03217)
B. M. Mbama Gaporaud, P. Sajet, G. Antonini, Chem. Eng. Sci. 53 (1998) 735 (https://doi.org/10.1016/S0009-2509(98)00332-7)
N. P. Yekeen, M. A. Manan, A. K. Idris, E. Padmanabhan, R. Junin, A. Samin, A. O. Gbadamosi, J. Petrol Sci. Eng. 164 (2018) 43 (https://doi.org/10.1016/j.petrol.2018.01.035)
X. Xi, Q. L. Shi, Fuel 288 (2021) 119354 (https://doi.org/10.1016/j.fuel.2020.119354)
T. Wang, H. Fan, W. Yang, Z. Meng, Fuel 264 (2020) 116832 (https://doi.org10.1016/j.fuel.2019.116832)
K. Samvatsar, H. Dave, Mater. Today: Proc. 47 (2021) 2384 (https://doi.org/10.1016/j.matpr.2021.04.353)
M. R. Little, V. Adell, A. R. Boccaccini, C. R. Cheeseman, Resour. Conserv. Recycl. 52 (2008) 1329 (https://doi.org/10.1016/j.resconrec.2008.07.017)
B. Wei, H. Li, Q. Li, L. Lu, Y. Li, W. Pu, Y. Wen, Fuel 211 (2018) 223 (https://doi.org/10.1016/j.fuel.2017.09.054)
B. Qin, Y. Lu, Y. Li, D. Wang, Adv. Powder Technol. 25 (2014) 1527 (https://doi.org/10.1016/j.apt.2014.04.010)
Z. Shao, D. Wang, Y. Wang, X. Zhong, X. Tang, X. Hu, China Nat. Hazard. 75 (2015) 1833 (https://doi.org/10.1007/s11069-014-1401-3)
U. T. Gonzenbach, A. R. Studart, A. Elena Tervoort, L. J. Gauckler, Langmuir 22 (2006) 10983 (https://doi.org/10.1021/la061825a)
T. N. Hunter, R. J. Pugh, G. V. Franks, G. J. Jameson, Adv. Colloid Interface Sci. 137 (2008) 57 (https://doi.org/10.1016/j.foodhyd.2007.08.005)
D. T. Johnson, J. Disper. Sci. Technol. 25 (2005) 575 (https://doi.org/10.1081/DIS-200027307)
G. Zhao, C. Dai, D. Wen, J. Fang, Colloid Surfaces, A 497 (2016) 214 (https://doi.org/10.1016/j.colsurfa.2016.02.037)
N. Jiang, Y. J. Sheng, C. L. Li, S. X. Lu, J. Mol. Liq. 268 (2018) 249 (https://doi.org/10.1016/j.molliq.2018.07.055)
R. Zhou, X. Lang, X. Zhang, B. Tao, L. He, Proc. Safety Environ. Prot. 146 (2021) 360 (https://doi.org/10.1016/j.psep.2020.09.017)
M. Savić Biserčić, L. Pezo, I. Sredović Ignjatović, Lj. Ignjatović, A. Savić, U. Jovanović, V. Andrić, J. Serb. Chem. Soc. 81 (2016) 813 (https://doi.org/10.2298/JSC151222027B)
H. Zhu, C. Hu, J. Guo, X. Wang, B. Wu, Coal Technol. (China) 38 (2019) 45 (https://doi.org/10.13301/j.cnki.ct.2019.09.016)
Z. Lei, N. Aziz, T. Ren, J. Nemcik, S. Tu, Arch. Min. Sci. 59 (2014) 807 (https://dx.doi.org/10.2478/amsc-2014-0056).