Biochar from agricultural biomass: green material as an ecological alternative to solid fossil fuels

Main Article Content

Emilija Vukićević
Jelena Isailović
Gordana Gajica
Vesna Antić
Branimir Jovančićević


The stalks left after harvesting corn, tomatoes, and tobacco have no further use and are usually burned on agricultural land. Samples of this waste were collected and pyrolyzed in this work at 400 ℃ for 30 min in a nitrogen atmosphere. The solid residue (biochar) obtained by pyrolysis was analyzed, and the results were compared with widely used solid fuels such as wood, coal, coke and charcoal. The heat values of biochar from tomato, tobacco, corn ZP 6263, and corn BC 398 stalks were 24.12, 23.09, 26.24, and 25.78 MJ kg-1, respectively. These values are significantly higher than the heat value of wood, which is about 12.50 MJ kg-1. The ash content of biochar was 12-20 %, which is consistent with the ash content of solid fuels. No heavy metals were found in biochar samples. The results show that biochar obtained from the pyrolysis of agricultural waste, such as tomatoes, tobacco and corn stalks, has good potential for use as a solid fuel.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
E. Vukićević, J. Isailović, G. Gajica, V. Antić, and B. Jovančićević, “Biochar from agricultural biomass: green material as an ecological alternative to solid fossil fuels”, J. Serb. Chem. Soc., Apr. 2024.
Environmental Chemistry

Funding data


S. Wang, G. Dai, H. Yang, Z. Luo, Progress in Energy and Combustion Science 62 (2017) 33 (

D. Fetjah, L. Ainlhout, B. Ihssane, A. Houari, Z. Idardare, L. Bouqbis, J. Ecol. Eng. 22 (2021) 36 (

S. N. Đurić, S. D. Brankov, T. R. Kosanić, M. B. Ćeranić, B. B. Nakomčić-Smaragdakis, THERM SCI 18 (2014) 533 (

Z. Hu, L. Wei, J. Compos. Sci. 7 (2023) 354 (

R. Font, J. Moltó, A. Gálvez, M. D. Rey, J. Anal. App. Pyrol. 85 (2009) 268 (

Z. Liu, G. Han, Fuel 158 (2015) 159 (

B. Song, P. Hall, Front. Energy Res. 8 (2020) (

W. A. Wan Ab Karim Ghani, P. S. Fernandez, M. Q. Halele, S. Sobri, J. Jasni, MATEC Web of Conf. 62 (2016) 04003 (

M. A. Maisyarah, L. J. Shiun, A. F. Nasir, H. Haslenda, H. W. Shin, Chem. Eng. Trans. 72 (2019) 79 (

H. B. Goyal, D. Seal, R. C. Saxena, Ren. Sust. Energy Rev. 12 (2008) 504 (

D. Chen, K. Cen, X. Zhuang, Z. Gan, J. Zhou, Y. Zhang, H. Zhang, Comb. Flame 242 (2022) 112142 (

X. He, Z. Liu, W. Niu, L. Yang, T. Zhou, D. Qin, Z. Niu, Q. Yuan, Energy 143 (2018) 746 (

I. Kojic, Study of synergetic effect of co‐pyrolysis of lignite and high density polyethylene in an open system petrographic and geochemical approach, PhD thesis (in Serbian), 2022 (

R. Arisanti, STI 3 (2018) 100 (

P. I. Premović, R. S. Nikolić, M. P. Premović, Geological Society, London, Special Publications 125 (1997) 201 (

P. Grammelis, N. Margaritis, E. Karampinis, Fuel Flexible Energy Generation (2016) 29 (

I. V. Miroshnichenko, D. V. Miroshnichenko, I. V. Shulga, Y. S. Balaeva, V. V. Pereima, Coke Chem. 62 (2019) 143 (

A. O. Otieno, P. G. Home, J. M. Raude, S. I. Murunga, A. Gachanja, Heliyon 8 (2022) e10272 (

M. Praspaliauskas, N. Pedišius, D. Čepauskienė, M. Valantinavičius, Biomass Conv. Bioref. 10 (2019) 937 (

C. Hadey, M. Allouch, M. Alami, F. Boukhlifi, I. Loulidi, The Sci. World J. 2022 (2022) 2554475 (

A. Supriya, R. Samantray, S. C. Mishra, IOP Conf. Ser.: Mater. Sci. Eng. 178 (2017) 012022 (

H. Huang, N. G. Reddy, X. Huang, P. Chen, P. Wang, Y. Zhang, Y. Huang, P. Lin, A. Garg, Sci Rep. 11 (2021) 7419 (

Most read articles by the same author(s)

1 2 > >>