Kinetic investigation of reactions of a 3-arylidene-2-thiohydantoin derivative with palladium(II) salts Scientific paper

Main Article Content

Petar Stanić
https://orcid.org/0000-0002-3655-6452
Darko Ašanin
https://orcid.org/0000-0003-1098-400X
Tanja Soldatović
https://orcid.org/0000-0003-3010-6503
Marija Živković
https://orcid.org/0000-0001-6887-9566

Abstract

1H-NMR spectroscopy was used to monitor the reactions of an arylidene 2-thiohydantoin derivative, 3-((phenylmethylene)amino)-2-thioxo-4-imidazolidinone (3), with PdCl2, cis-[PdCl2(dmso-S)2] and K2[PdCl4] in DMSO-d6 in order to elucidate the reaction kinetics and mechanism. The 2-thiohydantoin derivative 3 formed cis-[Pd(3-N,S)(dmso-S)2]+ complex (5) in reactions with PdCl2 and cis-[PdCl2(dmso-S)2], while no reaction with K2[PdCl4] was observed.
A two-step mechanism for the reactions of 3 with PdCl2 and cis-[PdCl2(dmso-S)2] is proposed, in which fast coordination to the side chain nitrogen occurs in the first step, while chelation and coordination to the sulfur atom in the 2-thiohydantoin ring is the second, slower, rate-determining step. The reaction rate constants were calculated and reactivities of the 2-thiohydantoin derivative 3 towards the palladium(II) salts were compared and discussed. Reaction of 3 with cis-[PdCl2(dmso-S)2] was faster than with PdCl2. The investigated palladium(II) salts also react with the solvent, DMSO-d6, and the influence of these side reactions on the outcome and kinetics of the 2-thiohydantoin derivative complexation reaction is discussed in detail. The obtained results of this study can have an impact in explanation of the coordination behavior of antitumor active palladium(II) and platinum(II) complexes.

Downloads

Metrics

PDF views
336
Apr 22 '24Apr 25 '24Apr 28 '24May 01 '24May 04 '24May 07 '24May 10 '24May 13 '24May 16 '24May 19 '2413
|

Article Details

How to Cite
[1]
P. Stanić, D. Ašanin, T. Soldatović, and M. Živković, “Kinetic investigation of reactions of a 3-arylidene-2-thiohydantoin derivative with palladium(II) salts: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 4, pp. 443–455, Apr. 2024.
Section
Organic Chemistry

Funding data

References

M. A. Metwally, E. Abdel-Latif, J. Sulfur Chem. 33 (2012) 229 (https://www.doi.org/10.1080/17415993.2011.643550)

S. H. Cho, S. H. Kim, D. Shin, Eur. J. Med. Chem. 164 (2019) 517 (https://doi.org/10.1016/j.ejmech.2018.12.066)

P. P. Gawas, B. Ramakrishna, N. Veeraiah, V. Nutalapati, J. Mater. Chem., C 9 (2021) 16341 (https://www.doi.org/10.1039/D1TC04090A)

J. Marton, J. Enisz, S. Hosztafi, T. Timar, J. Agr. Food Chem. 41 (1993) 148 (https://www.doi.org/10.1021/jf00025a031)

A. I. Khodair, H. I. el-Subbagh, A. A. el-Emam, Boll. Chim. Farm. 136 (1997) 561 (https://pubmed.ncbi.nlm.nih.gov/9440349)

A. M. Al-Obaid, H. I. El-Subbagh, A. Khodair, M. M. A. Elmazar, Anti-cancer Drug 7 (1996) 873 (https://www.doi.org/10.1097/00001813-199611000-00009)

S. Suzen, E. Buyukbingol, Farmaco 55 (2000) 246 (https://www.doi.org/10.1016/S0014-827X(00)00028-8)

A. C. W. Curran, U.S. Patent 3,984,430 (1976)

M. M. W. Habib, M. A. O. Abdelfattah, A. H. Abadi, Arch. Pharm. 348 (2015) 868 (https://www.doi.org/10.1002/ardp.201500272)

A. Takahashi, H. Matsuoka, Y. Uda, Environ. Mutagen Res. 26 (2004) 1 (https://www.doi.org/10.3123/jems.26.1)

H. R. Kim, H. J. Lee, Y. J. Choi, Y. J. Park, Y. Woo, S. J. Kim, M. H. Park, H. W. Lee, P. Chun, H. Y. Chung, H. R. Moon, Med. Chem. Commun. 5 (2014) 1410 (https://www.doi.org/10.1039/C4MD00171K)

B. Mo, J. Li, S. Liang, Anal. Biochem. 252 (1997) 169 (https://www.doi.org/10.1006/abio.1997.2278)

J. Nelson, M. Helber, M. Brick, U.S. Patent 5,695,917 (1997)

S. S. Kandil, G. B. El-Hefnawy, E. A. Baker, Thermochim. Acta 414 (2004) 105 (https://www.doi.org/10.1016/j.tca.2003.11.021)

J. A. Crim, H. G. Petering, Cancer Res. 27 (1967) 1278 (https://pubmed.ncbi.nlm.nih.gov/4952520)

V. R. Martínez, M. V. Aguirre, J. S. Todaro, E. G. Ferrer, P. A. M. Williams, Biol. Trace Elem. Res. 197 (2020) 454 (https://www.doi.org/10.1007/s12011-019-02013-w)

M. Pitucha, A. Korga-Plewko, A. Czylkowska, B. Rogalewicz, M. Drozd, M. Iwan, J. Kubik, E. Humeniuk, G. Adamczuk, Z. Karczmarzyk, E. Fornal, W. Wysocki, P. Bartnik, Int. J. Mol. Sci. 22 (2021) 3104 (https://www.doi.org/10.3390/ijms22063104)

R. M. El-Bahnasawy, M. M. Shoukry, M. M. Hussein, J. Chem. Sci. 96 (1986) 309 (https://www.doi.org/10.1007/BF02895726)

D. C. Dash, F. M. Meher, P. C. Mohanty, J. Nanda, Indian J. Chem., A 26 (1987) 698 (http://nopr.niscpr.res.in/handle/123456789/47907)

S. Abdullah, R. Al Hassani, A. J. Atia, A. Hussein, Acta Chim. Pharm. Indica 6 (2016) 80 (https://www.tsijournals.com/abstract/synthesis-characterization-and-enzyme-activity-of-coii-niii-cuii-pdii-ptiv-and-cdii-complexes-with-2thioxoimidazolidin4o-11471.html)

K. Tishchenko, E. Beloglazkina, M. Proskurnin, V. Malinnikov, D. Guk, M. Muratova, O. Krasnovskaya, A. Udina, D. Skvortsov, R. R. Shafikov, Y. Ivanenkov, V. Aladinskiy, I. Sorokin, O. Gromov, A. Majouga, N. Zyk, J. Inorg. Biochem. 175 (2017) 190 (https://www.doi.org/10.1016/j.jinorgbio.2017.07.015)

A. Fedorchuk, E. Goreshnik, Y. Slyvka, M. Mys’kiv, Acta Chim. Slov. 67 (2020) 1148 (https://www.doi.org/10.17344/acsi.2020.6045)

P. Arrizabalage, P. Castan, J.-P. Laurent, Transit. Met. Chem. 5 (1980) 324 (https://www.doi.org/10.17344/acsi.2020.6045)

J. S. Casas, E. E. Castellano, M. D. Couce, N. Playá, A. Sánchez, J. Sordo, J. M. Varela, J. Zukerman-Schpector, J. Coord. Chem. 47 (1999) 299 (https://www.doi.org/10.1080/00958979908023062)

R. M. Mahfouz, A. S. El Shahawy, A. A. Hassan, Transit. Met. Chem. 19 (1994) 385 (https://www.doi.org/10.1007/BF00139309)

D. C. Dash, P. Naik, S. K. Naik, R. K. Mohapatra, S. Ghosh, J. Indian Chem. Soc. 86 (2009) 969 (https://doi.org/10.5281/zenodo.5816598)

L. A. Ismail, R. Zakaria, E. M. Hassan, M. Y. Alfaifi, A. A. Shati, S. E. I. Elbehairi, A. A. El-Bindary, R. F. M. Elshaarawy, RSC Adv. 12 (2022) 28364 (https://www.doi.org/10.1039/D2RA05233D)

B. Šmit, R. Z. Pavlović, A. Radosavljević-Mihailović, A. Došen, M. G. Ćurčić, D. S. Šeklić, M. N. Živanović, J. Serb. Chem. Soc. 78 (2013) 217 (https://www.doi.org/10.2298/JSC120725154S)

P. E. Allegretti, M. de las Mercedes Schiavoni, C. Guzmán, A. Ponzinibbio, J. J. P. Furlong, Eur. J. Mass Spectrom. 13 (2007) 291 (https://www.doi.org/10.1255/ejms.885)

B. F. G. Johnson, J. Puga, P. R. Raithby, Acta Crystallogr., B 37 (1981) 953 (https://www.doi.org/10.1107/S0567740881004743)

B. B. Wayland, R. F. Schramm, Inorg. Chem. 8 (1969) 971 (https://www.doi.org/10.1021/ic50074a050)

J. Selbin, W. E. Bull, L. H. Holmes, J. Inorg. Nucl. Chem. 16 (1961) 219 (https://www.doi.org/10.1016/0022-1902(61)80493-4)

L. I. Elding, A. B. Gröning, Inorg. Chim. Acta 31 (1978) 243 (https://www.doi.org/10.1016/s0020-1693(00)95010-2).

Most read articles by the same author(s)