Preparation, characterization and evaluation of nano manganese dioxide coated on alumina as a new adsorbent for the effective removal of phenol from aqueous samples

Main Article Content

Sayed Zia Mohammadi
https://orcid.org/0000-0001-6980-9121
Farideh Mousazadeh
https://orcid.org/0000-0002-7119-4741
Leilla Salajegheh-Tezerji
Batoul Lashkari
Elina Bani-Asadi

Abstract

An effective sorbent as title nano manganese dioxide coated on alumina (NMO/Al) nanocomposite was prepared as an economical adsorbent in the present study. To this end, morphological, chemical, and surface characteristics of NMO/Al were determined through various techniques. The NMO/Al nanocomposite could be thus separated effortlessly from water samples using a filter paper and then, the removal of phenol from the wastewater samples was evaluated. Accordingly, various empirical parameters affecting this removal including pH, ionic strength, time, temperature, and phenol concentration were examined. In order to investigate the adsorption equilibrium, Langmuir, Freundlich, and Temkin equations were utilized and since that the Langmuir adsorption model had a higher correlation coefficient (R2) indicating better fit to the adsorption characteristics. Various kinetic models were employed to evaluate the adsorption kinetics of phenol on the NMO/Al nanocomposite. Based on the results, the Elovich model exhibited the best fit with a sorption capacity of 21.34 mg/g. Additionally, the adsorbed phenol was desorbed from the NMO/Al surface by using ethanol and with high efficiency, and then the NMO/Al nanocomposite was used again to remove phenol. The results showed that the NMO/Al nanocomposite could be reused for more than five cycles. Based on the findings, the phenol adsorption process from wastewater using NMO/Al nanocomposite is considered an efficient adsorption approach in a large-scale adsorption system.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Z. Mohammadi, F. Mousazadeh, L. . Salajegheh-Tezerji, B. Lashkari, and E. Bani-Asadi, “Preparation, characterization and evaluation of nano manganese dioxide coated on alumina as a new adsorbent for the effective removal of phenol from aqueous samples”, J. Serb. Chem. Soc., Apr. 2024.
Section
Environmental Chemistry

Funding data

References

Q. Yu, M. Tang, G. Liu, M. Liu, J. Ye, Chem. Eng. Process 186 (2023) 109313 (https://doi.org/10.1016/j.cep.2023.109313)

A.K. Mohammed, J.K. Ali, M.B.S. Kuzhimully, M.A. Addicoat, S. Varghese, M. Baias, E. Alhseinat, D. Shetty, Chem. Eng. J. 466 (2023) 143234 (https://doi.org/10.1016/j.cej.2023.143234)

P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Chem. Eng Res Des. 92, (2014) 375 (https://doi.org/10.1016/j.cherd.2013.07.023)

F. Khoshtinat, T. Tabatabaie, B. Ramavandi, S. Hashemi, Chemosphere 283 (2021) 131265 (https://doi.org/10.1016/j.chemosphere.2021.131265)

S. Zarin, Z. Aslam, A. Zahir, M. Shahzad Kamal, A. Ghaffar Rana, W. Ahmad, S. Ahmed, J. Iran. Chem. Soc. 15 (2018)2689 (https://doi.org/10.1007/s13738-018-1457-1)

R. Sridar, U. Uma Ramanane, M. Rajasimman, Environ. Nanotechnol. Monitor. Manag. 10 (2018) 388 (https://doi.org/10.1016/j.enmm.2018.09.003)

K.A. Hernández-Hernández, J. Illescas, M.C. Díaz-Nava, S. Martínez-Gallegos, C. Muro-Urista, R.E. Ortega-Aguilar, E. Rodríguez-Alba, E. Rivera, Appl. Clay Sci. 157 (2018) 212 (https://doi.org/10.1016/j.clay.2018.01.020)

M. Mallek, M. Chtourou, M. Portillo, H. Monclús, K. Walha, A. ben Salah, V. Salvadó, J. Environ. Manag. 223 (2018) 576 (https://doi.org/10.1016/j.jenvman.2018.06.069)

X. Yang, X. Liu, W. Tang, Y. Gao, H. Ni, J. Zhang, Korean J. Chem. Eng. 34 (2017) 723 (https://doi.org/10.1007/s11814-016-0311-3)

S.Z. Mohammadi, Z. Darijani, M.A. Karimi, J. Alloys Compd. 832 (2020) 154942 (https://doi.org/10.1016/j.jallcom.2020.154942)

T. Pernyeszi, V. Farkas, A. Felinger, B. Boros, I. Dékány, Environ. Sci. Pollut. Res. 25 (2018) 8550 (https://doi.org/10.1007/s11356-017-1120-x)

N.S. Mirbagheri, S. Sabbaghi, Microporous Mesoporous Mater. 259 (2018) 134 (https://doi.org/10.1016/j.micromeso.2017.10.007)

Y. Yu, Z. Hu, Y. Wang, H. Gao, Int. J. Miner. Process. 162 (2017) 1 (https://doi.org/10.1016/j.minpro.2017.02.001)

M. Aazza, H. Ahlafi, H. Moussou, H. Maghat, J. Environ. Chem. Eng. 5, (2017) 3418 (https://doi.org/10.1016/j.jece.2017.06.051)

C. di Luca, F. Ivorra, P. Massa, R. Fenoglio, Chem. Eng. J. 268 (2015) 280 (https://doi.org/10.1016/j.cej.2015.01.074)

E. Deschamps, V.S.T. Ciminelli, P.G. Weidler, A.Y. Ramos, Clays Clay Miner. 51 (2003) 197 (https://doi.org/10.1346/CCMN.2003.0510210)

S.M. Maliyekkal, A.K. Sharma, L. Philip, Water Res. 40 (2006) 3497 (https://doi.org/10.1016/j.watres.2006.08.007)

O.A. Elhefnawy, W.I. Zidan, M.M. Abo-Aly, E.M. Bakier, G.A. Al-Magid, Spectrosc. Lett. 47 (2014) 131 (https://doi.org/10.1080/00387010.2013.773519)

K. Atrak, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. 29 (2018) 8347 (https://doi.org/10.1007/s10854-018-8845-2)

X. Wan, S. Yang, Z. Cai, Q. He, Y. Ye, Y. Xia, G. Li, J. Liu, Nanomaterials 9 (2019) 847 (https://doi.org/10.3390/nano9060847)

S.Z. Mohammadi, H. Hamidian, L. Karimzadeh, Z. Moeinadini, Arab. J. Chem. 9 (2016) S1290 (http://dx.doi.org/10.1016/j.arabjc.2012.02.002)

Y.-D. Liang, Y.-J. He, T.-T. Wang, L.H. Lei, J. Water Process Eng. 27 (2019) 77 (https://doi.org/10.1016/j.jwpe.2018.11.013)

Y. Zhou, X. Liu, L. Tang, F. Zhang, G. Zeng, X. Peng, L. Luo, Y. Deng, Y. Pang, J. Zhang, J. Hazard. Mater. 333 (2017) 80 (https://doi.org/10.1016/j.jhazmat.2017.03.031)

S. Z. Mohammadi, Z. Safari, N. Madady, J. Inorg. Organomet. Polym. Mater. 30 (2020) 3199 (https://doi.org/10.1007/s10904-020-01485-x)

S. Z. Mohammadi, N. Mofidinasab, M. A. Karimi, A. Beheshti, Int. J. Environ. Sci. Technol. 17 (2020) 4815 (https://doi.org/10.1007/s13762-020-02767-0)

S. Z. Mohammadi, N. Mofidinasab, M. A. Karimi, F. Mosazadeh, Water Sci. Technol. 82 (2020) 829 (https://doi.org/10.2166/wst.2020.375)

S. Z. Mohammadi, M. A. Karimi, S. N. Yazdy, T. Shamspur, H. Hamidian, Quim Nova 37 (2014) 804 (https://www.scielo.br/j/qn/a/yGw8SYRs7w5ZdY7w6S4f4hR/?lang=en).