La2O3/Co3O4 nanocomposite modified screen printed electrode for voltammetric determination of sertraline

Sayed Zia Mohammadi, Hadi Beitollahi, Taherh Rohani, Hossein Allahabadi, Somayeh Tajik

Abstract


La2O3/Co3O4 nanocomposite was synthesized and then used for modification of screen-printed electrode (SPE) prior to the electrochemical determination of sertraline. A significant increment in peak current response was observed and peak potential also shifted towards less positive potentials showing the facilitated oxidation procedure at surface of modified SPE (La2O3/Co3O4/SPE). The quantitative determination of sertraline was carried out by using different pulse voltammetry and the anodic peak current was found to increase with increasing sertraline concentration in the linear range of 5.0–400.0 µM with limit of detection as 1.0 mM. The prepared La2O3/Co3O4/SPE has been successfully used for detecting sertraline in sertraline tablet and urine samples with excellent recoveries.


Keywords


Sertraline; electrochemical reaction; differential pulse voltammetry

Full Text:

PDF (1,306 kB)

References


S. Dermiş, H. Y. Cay, Pharmazie 65 (2010) 182 (https://dx.doi.org/10.1691/ph.2010.9124)

E. Iwuoha, R. Ngece, M. Klink, P. Baker, IET Nanobiotechnol. 1 (2007) 62 (https://dx.doi.org/ 10.1049/iet-nbt:20070005)

A. Izadyar, D. R. Arachchige, H. Cornwell, J. C. Hershberger, Sens. Actuators B 223 (2016) 226 (https://dx.doi.org/10.1016/j.snb.2015.09.048)

M. H. Vela, M. B. Quinaz-Garcia, M. C. Montenegro, Fresenius J. Anal. Chem. 369 (2001) 563 (https://dx.doi.org/10.1007/s002160000686)

Y. Shoja, A. A. Rafati, J. Ghodsi, Electrochim. Acta 203 (2016) 281 (https://dx.doi.org/10.1016/j.electacta.2016.03.117)

M. A. Rahman, Z. Iqbal, M. Aamir Mirza, A. Hussain, Pharm. Methods 3 (2012) 62 (https://dx.doi.org/10.4103/2229-4708.103874)

H. Cheng, J. Liang, Q. Zhang, Y. Tu, J. Electroanal. Chem. 674 (2012) 7 (https://dx.doi.org/10.1016/j.jelechem.2012.03.023)

S. W. Huang, M. M. Hsieh, S. Y. Chang, Talanta 101 (2012) 460 (https://dx.doi.org/10.1016/j.talanta.2012.09.060)

E. S. Koçoğlu, S. Bakırdere, S. Keyf, Bull. Environ. Contam. Toxicol. 99 (2017) 354 (https://dx.doi.org/10.1007/s00128-017-2118-2)

N. M. El-Enany, A. Abdelal, F. Belal, Chem. Cent. J. 5 (2011) 56 (https://dx.doi.org/10.1186/1752-153X-5-61)

A. Amin, H. Dessouki, M. Moustafa, M. Ghoname, Chem. Pap. 63 (2009) 716 (https://dx.doi.org/ 10.2478/s11696-009-0069-8)

B. P. Forester, D. G. Harper, J. E. Jensen, C. Ravichandran, B. Jordan, P. E. Renshaw, B. M. Cohen, Int. J. Geriatr Psychiatry 24 (2009) 788 (https://dx.doi.org/10.1002/gps.2230)

J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, L. Tian, X. Zhou, H. Jiang, Colloids Surf. B 111 (2013) 392 (https://dx.doi.org/10.1016/j.colsurfb.2013.06.030)

R. Shi, J. Liang, Z. Zhao, A. Liu, Y. Tian, Talanta 169 (2017) 37 (https://dx.doi.org/10.1016/j.talanta.2017.03.042)

H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Anal. Chem. 80 (2008) 9848 (https://dx.doi.org/10.1021/ac801854j)

S. Tajik, H. Beitollahi, P. Biparva, J. Serb. Chem. Soc. 83 (2018) 1 (https://dx.doi.org/10.2298/JSC170930024T)

M. M. Khater, H. B. Hassib, Y. M. Issa, S. H. Mohammed, Talanta 134 (2015) 546 (https://dx.doi.org/10.1016/j.talanta.2014.11.018)

M. Arvand, M. Hashemi, J. Braz. Chem. Soc. 23 (2012) 392 (http://dx.doi.org/10.1590/S0103-50532012000300004)

H. P. A. Nouws, C. D. Matos, A. A. Barros, J. A. Rodrigues, J. Pharm. Biomed. Anal. 39 (2005) 290 (https://dx.doi.org/10.1016/j.jpba.2005.02.040)

S. Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Environ. Monit. Assess 187 (2015) 122 (https://dx.doi.org/10.1007/s10661-015-4309-9)

L. Cui, S. Ai, K. Shang, X. Meng, C. Wang, Microchim. Acta 174 (2011) 31 (https://dx.doi.org/10.1007/s00604-011-0594-3)

S. Z. Mohammadi, H. Beitollahi, M. Jasemi, A. Akbari, Electroanalysis 27 (2015) 2421 (https://dx.doi.org/10.1002/elan.201500245)

S. Z. Mohammadi, H. Beitollahi, T. Rohani, H. Allahabadi, J. Electrochem. Sci. Eng. 9 (2019) 113 (http://dx.doi.org/10.5599/jese.637)

T. Rohani, S. Z. Mohammadi, M. A. Karimi, S. Amini, Chem. Phy. Let. 713 (2018) 259 (https://dx.doi.org/10.1016/j.cplett.2018.10.051)

B. N. Olana, S. A. Kitte, T. R. Soreta, J. Serb. Chem. Soc. 80 (2015) 1161 (https://dx.doi.org/10.2298/JSC141104006O)

S. Z. Mohammadi, H. Beitollahi, S. Tajik, Micro and Nano Syst. Lett. 6 (2018) 9 (https://dx.doi.org/10.1186/s40486-018-0070-5)

P. J. Lamas-Ardisana, P. Fanjul-Bolado, A. Costa-García, J. Electroanal. Chem. 775 (2016) 129 (https://dx.doi.org/10.1016/j.jelechem.2016.04.036)

Y. Luo, Z. Lu, Y. Jiang, D. Wang, L. Yang, P. Huo, Z. Da, X. Bai, X. Xie, P. Yang, Chem. Eng. J. 240 (2014) 244 (https://dx.doi.org/10.1016/j.cej.2013.11.088)

S. Z. Mohammadi, H. Beitollahi, T. Rohani, H. Allahabadi, J. Electrochem. Sci. Eng. 9(2) (2019) 113 (http://dx.doi.org/10.5599/jese.637)

S. Z. Mohammadi, H. Beitollahi, T. Rohani, H. Allahabadi, J. Electroanal. Chem. 847 (2019) 113223 (https://dx.doi.org/10.1016/j.jelechem.2019.113223)

F. Khosrow-pour, M. Aghazadeh, B. Sabour, S. Dalvand, Ceramics. Int. 39 (2013) 9491 (https://dx.doi.org/10.1016/j.ceramint.2013.05.067)

F. L. S. Carvalho, Y. J. O. Asencios, A. M. B. Rego, E. M. Assaf, Appl. Catal. A 483 (2014) 52 (https://dx.doi.org/10.1016/j.apcata.2014.06.027)

Y. Xu, Y. Peng, X. Zheng, K. D. Dearn, H. Xu, X. Hu, Energy 83 (2015) 80 (https://dx.doi.org/10.1016/j.energy.2015.01.117)

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.




DOI: https://doi.org/10.2298/JSC190326126M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)