Cobalt catalyzed defunctionalization reactions Review article

Main Article Content

LJiljana Koračak
https://orcid.org/0000-0003-4892-1290
Vladimir Ajdačić
https://orcid.org/0000-0002-3423-0862

Abstract

Catalytic defunctionalization of complex molecules has attracted sig­nificant attention in organic synthesis. This reaction enables common func­tional groups to serve as “traceless handles” for the new bond construction. In this mini-review, we have summarized the latest advances, methodologies and mechanistic insights into the selective cleavage of C–C and C–X bonds catal­ysed by cobalt complexes, shedding light on their increasing importance in modern chemical synthesis. The content of this review is categorized according to the type of functional group being removed from molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Koračak and V. Ajdačić, “Cobalt catalyzed defunctionalization reactions: Review article”, J. Serb. Chem. Soc., vol. 89, no. 6, pp. 785–806, Jul. 2024.
Section
Organic Chemistry

Funding data

References

A. Modak, D. Maiti, Org. Biomol. Chem. 14 (2016) 21 (https://doi.org/10.1039/C5OB01949D)

Ž. Selaković, A. M. Nikolić, V. Ajdačić, I. M. Opsenica, Eur. J. Org. Chem. (2022) e202101265 (https://doi.org/10.1002/ejoc.202101265)

J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 110 (2010) 3552 (https://doi.org/10.1021/cr900354u)

J. S. Dickstein, J. M. Curto, O. Gutierrez, C. A. Mulrooney, M. C. Kozlowski, J. Org. Chem. 78 (2013) 4744 (https://doi.org/10.1021/jo400222c)

O. Navarro, H. Kaur, P. Mahjoor, S. P. Nolan, J. Org. Chem. 69 (2004) 3173 (https://doi.org/10.1021/jo035834p)

J. F. Hooper, R. D. Young, A. S. Weller, M. C. Willis, Chem. Eur. J. 19 (2013) 3125 (https://doi.org/10.1002/chem.201204056)

M. Tobisu, R. Nakamura, Y. Kita, N. Chatani, J. Am. Chem. Soc. 131 (2009) 3174 (https://doi.org/10.1021/ja810142v)

N. Chatani, H. Tatamidani, Y. Ie, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. 123 (2001) 4849 (https://doi.org/10.1021/ja0103501)

G. Domazetis, B. Tarpey, D. Dolphin, B. R. James, J. Chem. Soc., Chem. Commun. (1980) 939 (https://doi.org/10.1039/C39800000939)

B. Kokić, B. Vulović, M. Jović, A. Andrijević, V. Ajdačić, I. M. Opsenica, Eur. J. Org. Chem. 26 (2023) e202300997 (https://doi.org/10.1002/ejoc.202300997)

B. Kokić, Ž. Selaković, A. M. Nikolić, A. Andrijević, B. Anđelković, V. Ajdačić, I. M. Opsenica, Eur.J. Org.Chem. (2022) e202201112 (https://doi.org/10.1002/ejoc.202201112)

G. R. Lappin, J. D. Sauer, Alpha Olefns Applications Handbook, Marcel Dekker, New York, 1989 (ISBN:9780824778958)

I. T. Horváth, Chem. Rev. 118 (2018) 369 (https://doi.org/10.1021/acs.chemrev.7b00721)

R. A. Sheldon, J. K. Kochi, Org. React. 19 (2011) 279 (https://doi.org/10.1002/0471264180.or019.04)

T.Takeda, Modern Carbonyl Olefination: Methods and Applications; John Wiley & Sons, Hoboken, NJ, 2006 (ISBN:978-3-527-60538-5)

L. J. Gooßen, N. A. Rodríguez, Chem. Commun. (2004) 724 (https://doi.org/10.1039/B316613A)

A. John, M. O. Miranda, K. Ding, B. Dereli, M. A. Ortuño, A. M. LaPointe, G. W. Coates, C. J. Cramer, W. B. Tolman, Organometallics 35 (2016) 2391 (https://doi.org/10.1021/acs.organomet.6b00415)

A. John, M. A. Hillmyer, W. B. Tolman, Organometallics 36 (2017) 506 (https://doi.org/10.1021/acs.organomet.6b00940)

S. Maetani, T. Fukuyama, N. Suzuki, D. Ishihara, I. Ryu, Organometallics 30 (2011) 1389 (https://doi.org/10.1021/om1009268)

K. C. Cartwright, J. A. Tunge, ACS Catal. 8 (2018) 11801 (https://doi.org/10.1021/acscatal.8b03282)

K. C. Cartwright, E. Joseph, C. G. Comadoll, J. A. Tunge, Chem. Eur. J. 26 (2020) 12454 (https://doi.org/10.1002/chem.202001952)

X. Sun , J. Chen , T. Ritter , Nature Chem. 10 (2018) 1229 (https://doi.org/10.1038/s41557-018-0142-4)

V. T. Nguyen, V. D. Nguyen, G. C. Haug, H. T. Dang, S. Jin, Z. Li, C. Flores-Hansen, B. S. Benavides, H. D. Arman, O. V. Larionov, ACS Catal. 9 (2019) 9485 (https://doi.org/10.1021/acscatal.9b02951)

E. N. G. Marsh, M. W. Waugh, ACS Catal. 3 (2013) 2515 (https://doi.org/10.1021/cs400637t)

N. Terzić Jovanović, V. Ajdačić, J. Serb. Chem. Soc. 87 (2022) 669 (https://doi.org/10.2298/JSC220128024T)

H. Lu, T. Y. Yu, P. F. Xu, H. Wei, Chem. Rev. 121 (2021) 365 (https://doi.org/10.1021/acs.chemrev.0c00153)

S. Yuan, H. Sun, S. Zhang, X. Li, Inorg. Chim. Acta 439 (2016) 100 (https://doi.org/10.1016/j.ica.2015.10.006)

D. J. Abrams, J. G. West, E. J. Sorensen, Chem. Sci. 8 (2017) 1954 (https://doi.org/10.1039/C6SC04607J)

H. Alawisi, K. F. Al-Afyouni, H. D. Arman, Z. J. Tonzetich, Organometallics 37 (2018) 4128 (https://doi.org/10.1021/acs.organomet.8b00668)

30. D. Kolb, M. Morgenstern, B. König, Chem. Commun. 59 (2023) 8592 (https://doi.org/10.1039/D3CC02170J)

D. Kolb, A. A. Almasalma, M. Morgenstern, L. Ganser, I. Weidacher, B. König, ChemPhotoChem 7 (2023) e202300167 (https://doi.org/10.1002/cptc.202300167)

A. Dobbs, J. Org. Chem. 66 (2001) 638 (https://doi.org/10.1021/jo0057396)

A. Ramanathan, L. S. Jimenez, Synthesis (2010) 217 (https://doi.org/10.1055/s-0029-1217112)

S. Agarwal, S. R. Al-Abed, D. D. Dionysiou, Environ. Sci. Technol. 41 (2007) 3722 (https://doi.org/10.1021/es062886y)

A. Kokanović, V. Ajdačić, N. Terzić Jovanović, S. Stankic, I. M. Opsenica, ACS Appl. Nano Mater. 6 (2023) 15820 (https://doi.org/10.1021/acsanm.3c02743)

J. Li, T. Zheng, H. Suna, X. Li, Dalton Trans. 42 (2013) 13048 (https://doi.org/10.1039/C3DT50409C)

K. S. Chan, C. R. Liu, K. L. Wong, Tetrahedron Lett. 56 (2015) 2728 (https://doi.org/10.1016/j.tetlet.2015.04.014)

C. Chen, H. Zuo, K. S. Chan, Tetrahedron 75 (2019) 510 (https://doi.org/10.1016/j.tet.2018.12.010)

R. Z. Liao, S. L. Chen, P. E. M. Siegbahn, ACS Catal. 5 (2015) 7350 (https://doi.org/10.1021/acscatal.5b01502)

B. Sahoo, A. E. Surkus, M. M. Pohl, J. Radnik, M. Schneider, S. Bachmann, M. Scalone, K. Junge, M. Beller, Angew. Chem. Int. Ed. 56 (2017) 11242 (https://doi.org/10.1002/anie.201702478)

B. R. P. Reddy, A. Auffrant, C. Gosmini, Asian J. Org. Chem. 10 (2021) 3275 (https://doi.org/10.1002/ajoc.202100616)

K. M. McCauley, D. A. Pratt, S. R. Wilson, J. Shey, T. J. Burkey, W. A. van der Donk, J. Am. Chem. Soc. 127 (2005) 1126 (https://doi.org/10.1021/ja048573p)

43. H. Shimakoshi, M. Tokunaga, T. Babaa, Y. Hisaeda, Chem. Commun. (2004) 1806 (https://doi.org/10.1039/B406400C)

H. Shimakoshi, Y. Hisaeda, Chem. Rec. 21 (2021) 2080 (https://doi.org/10.1002/tcr.202100077)

H. Shimakoshi, Y. Hisaeda, ChemPlusChem 82 (2017) 18 (https://doi.org/10.1002/cplu.201600303)

J. M. Herrmann, B. König, Eur. J. Org. Chem. (2013) 7017 (https://doi.org/10.1002/ejoc.201300657)

M. Tobisu, K. Yamakawa, T. Shimasakia, N. Chatani, Chem. Commun. 47 (2011) 2946 (https://doi.org/10.1039/C0CC05169A)

T. Funabiki, Y. Yamazaki, K. Tarama, J. Chem. Soc., Chem. Commun. (1978) 63 (https://doi.org/10.1039/C39780000063)

J. T. Lee, H. Alper, Tetrahedron Lett. 31 (1990) 4101 (https://doi.org/10.1016/S0040-4039(00)97553-1)

B. H. Gross, R. C. Mebane, D. L. Armstrong, Appl. Catal., A 219 (2001) 281 (https://doi.org/10.1016/S0926-860X(01)00700-1)

Y. L. Ren, M. Tian, X. Z. Tian, Q. Wang, H. Shang, J. Wang, Z. C. Zhang, Catal. Commun. 52 (2014) 36 (https://doi.org/10.1016/j.catcom.2014.03.036)

J. Fukuda, K. Nogi, H. Yorimitsu, Asian J. Org. Chem. 7 (2018) 2049 (https://doi.org/10.1002/ajoc.201800473).