Introductory concept for teaching chirality – symmetry of the asymmetric

Main Article Content

Branislav Kokić
https://orcid.org/0000-0002-4821-2884
Vladimir Ajdačić
https://orcid.org/0000-0002-3423-0862
Igor Opsenica
https://orcid.org/0000-0003-4942-4042
Mario Zlatović
https://orcid.org/0000-0003-4311-1731

Abstract

Chirality is traditionally a problematic subject for undergraduate students at the beginning of learning organic chemistry, yet it is of great importance in life sciences. If the initial introduction of chirality is conducted carelessly, students will face ambiguity through the rest of the course and education every time they come across chirality-related subjects. Although there are numerous methods for overcoming the problems of visualization of chiral molecules in 3D space, the connection of chirality with molecular changes like vibrations and conformations is usually not explained thoroughly. In this work, chirality is introduced on dynamic (real) systems, because students from the start should perceive molecules in their natural state of constant motion and change. Apart from the proposition of the lecture concept, exercises are also included, that employ free and readily available software.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. Kokić, V. Ajdačić, I. Opsenica, and M. Zlatović, “Introductory concept for teaching chirality – symmetry of the asymmetric”, J. Serb. Chem. Soc., Mar. 2024.
Section
History of & Education in Chemistry

Funding data

References

L. J. Juszczak, J. Chem. Educ. 98 (2021) 3384 (https://doi.org/10.1021/acs.jchemed.1c00633)

a) A. Alsfouk, J. Chem. Educ. 99 (2022) 1900 (https://doi.org/10.1021/acs.jchemed.1c01267); b) C. E. Dickenson, R. A. R. Blackburn, R. G. Britton, J. Chem. Educ. 97 (2020) 3714 (https://doi.org/10.1021/acs.jchemed.0c00457); c) M. W. Pelter, M. T. Howell, C. Anderson, A. Sayeed, J. Chem. Educ. 97 (2020) 754 (https://doi.org/10.1021/acs.jchemed.9b00934); d) D. M. Silva, C. M. R. Ribeiro, J. Chem. Educ. 94 (2017) 1272 (https://doi.org/10.1021/acs.jchemed.7b00219);

e) M. Abraham, V. Varghese, H. Tang, J. Chem. Educ. 87 (2010) 1425 (https://doi.org/10.1021/ed100497f); f) P. Lloyd-Williams, E. Giralt, J. Chem. Educ. 82 (2005), 1031 (https://doi.org/10.1021/ed082p1031)

G. P. Moss, Pure Appl. Chem. 68 (1996) 2193 (https://doi.org/10.1351/pac199668122193)

a) A. Guijarro, M. Yus, The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem, The Royal Society of Chemistry, Cambridge, UK, 2009, p. 31-48 (ISBN: 9780854041565; b) M. Quack, G. Seyfang, G. Wichmann, Chem. Sci. 13 (2022) 10598 (https://doi.org/10.1039/D2SC01323A) and references therein

C. J. M. Stirling, J. Chem. Educ. 51 (1974) 50 (https://doi.org/10.1021/ed051p50)

P. Lloyd-Williams, E. Giralt, J. Chem. Educ. 80 (2003) 1178 (https://doi.org/10.1021/ed080p1178)

D. A. Dougherty, E. V. Anslyn, Modern Physical Organic Chemistry, University Science Books, The United States of America, 2006 (ISBN: 9781891389313)

Y. Zhang, M. Sayama, M. Luo, Y. Lu, D. J. Tantillo, J. Chem. Educ. 99 (2022) 2721 (https://doi.org/10.1021/acs.jchemed.2c00443)

a) B. M. Wong, M. M. Fadri, S. Raman, J. Comput. Chem. 29 (2007) 481 (https://doi.org/10.1002/jcc.20807); b) D. Nori-Shargh, J. E. Boggs, Struct. Chem. 22 (2010) 253 (https://doi.org/10.1007/s11224-010-9675-x)

a) D. J. Brand, J. Fisher, J. Chem. Educ. 64 (1987) 1035 (https://doi.org/10.1021/ed064p1035); b) M. Čepič, Mol. Cryst. Liq. Cryst. 475 (2007) 151 (https://doi.org/10.1080/15421400701681141)

This energy barrier wasn’t measured on ambient temperature, but it can be approximated that it doesn’t significantly change with temperature. V. Schurig, S. Reich, Chirality 10 (1998) 316 (https://doi.org/10.1002/(SICI)1520-636X(1998)10:4<316::AID-CHIR5>3.0.CO;2-5)

A. Mazzanti, L. Lunazzi, M. Minzoni, J. E. Anderson, J. Org. Chem. 71 (2006) 5474 (https://doi.org/10.1021/jo060205b)

L. Schaefer, C. Van Alsenoy, L. Van Den Enden, J. Chem. Educ. 61 (1984) 945 (https://doi.org/10.1021/ed061p945), and references therein.

J. M. Lehn, Nitrogen inversion, in Dynamic Stereochemistry, J. E. Baldwin, R. H. Fleming, J. M. Lehn, W. Tochtermann, Ed. 1, Springer Berlin, Heidelberg, Germany, 1970, p. 311 (https://doi.org/10.1007/BFb0050820)

I. Fernández, N. Khiar, Chem. Rev. 103 (2003) 3651 (https://doi.org/10.1021/cr990372u)

This energy barrier wasn’t measured on ambient temperature, but it can be approximated that it doesn’t significantly change with temperature. a) A. Messara, N. Vanthuyne, P. Diter, M. Elhabiri, A. Panossian, G. Hanquet, E. Magnier, F. R. Leroux, Eur. J. Org. Chem. 2021 (2021) 5019 (https://doi.org/10.1002/ejoc.202100816) b) H. Marom, P. U. Biedermann, I. Agranat, Chirality 19 (2007) 559 (https://doi.org/10.1002/chir.20417)

J. L. Bada, Interdiscip. Sci. Rev. 7 (1982) 30 (https://doi.org/10.1179/030801882789801304)

E. E. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, Wiley-Interscience, United States, 1994, p. 1119-1190 (ISBN: 9780471016700)

a) K. Mislow, P. Bickart, Isr. J. Chem. 15 (1976) 1 (https://doi.org/10.1002/ijch.197600002); b) D. F. Mowery, Jr. J. Chem. Educ. 46 (1969) 269 (https://doi.org/10.1021/ed046p269)

Most read articles by the same author(s)