Raman study of the interactions between highly ordered pyrolytic graphite (HOPG) and polyoxometalates: The effects of acid concentration

Bojan Vidoeski, Svetlana Jovanović, Ivanka Holclajtner-Antunović, Danica Bajuk-Bogdanović, Milica Budimir, Zoran Marković, Biljana Todorović Marković


Heteropoly acids (HPAs) have found wide applications, such as in catalysis, energy conversion and storage, analytical chemistry, clinical med­icine, materials science and others, but their use is limited due to their low sur­face area and high solubility in water. One of the possible ways to overcome these obstacles is to use height specific surface area supports for HPAs, such as carbon nanomaterials. Raman spectroscopy was applied for a studying the interaction between HPAs and highly ordered pyrolytic graphite (HOPG) as a model of a support. HOPG was exposed to two different HPAs: 12-tungsto­phosphoric acid and 12-molybodphosphoric acid, at different concentrations. It was noticed that 12-molybodphosphoric acid had stronger effects on the HOPG structure causing a weak doping and an increase of structural disorder. It was supposed that HOPG interacts with especially external oxygen atoms of
12-molybodphosphoric acid. Atomic force microscopy showed that the surface roughness of HOPG treated with 12-molybodphosphoric acid increases with increasing acid concentration, while in the case of HOPG exposed to 12-tungs­tophosphoric acid, the surface roughness concentration independent. The growth trend in the measured surface roughness (RMS) was in the agreement with the changes in the intensity ratio ID/IG obtained from the Raman spectra of the HOPG samples treated with 12-molybdophosphoric acid.


heteropoly acids; graphite; Raman spectroscopy; Atomic force microscopy

Full Text:

PDF (2,375 kB)


M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983

M. T. Pope, A. Müller, Polyoxometalate Chemistry From Topology via Self-Assembly to Applications, Kluwer Academic Publishing, Dordrecht.D.E., New York, 2001

J.M. Poblet, X. López, C. Bo, Chem. Soc. Rev. 32 (2003) 297

S. Liu, Z. Tang, Nano Today 5 (2010) 267

M. Fournier, R. Thouvenot, C. Rocchiccioli-Deltcheff, J. Chem. Soc. Faraday Trans. 87 (1991) 349

I. V. Kozhevnikov, Chem. Rev. 98 (1998) 171

R.T. Carr, M. Neurock, E. Iglesia, J. Catal. 278 (2011) 78

D.E. Katsoulis, Chem. Rev. 98 (1998) 359

C.L. Hill, Chem. Rev. 98 (1998) 1

S. Wang, H. Li, S. Li, F. Liu, D. Wu, X. Feng, L. Wu, Chemistry. 19 (2013) 10895

P.-Y. Hoo, A.Z. Abdullah, Chem. Eng. J. 250 (2014) 274

N.H.H. Phuc, H. Ohkita, T. Mizushima, N. Kakuta, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 99 (2012) 248

A.E.R.S. Khder, H.M.A. Hassan, M.S. El-Shall, Appl. Catal. A Gen. 411-412 (2012) 77

C.J. Boxley, H.S. White, T.E. Lister, P.J. Pinhero, J. Phys. Chem. B. 107 (2003) 451

Y. Surendranath, D.A. Lutterman, Y. Liu, D.G. Nocera, J. Am. Chem. Soc. 134 (2012) 6326

F. Hui, J.-M. Noël, P. Poizot, P. Hapiot, J. Simonet, Langmuir 27 (2011) 5119

I.K. Song, M.S. Kaba, G. Coulston, K. Kourtakis, M.A. Barteau, Chem. Mater. 8 (1996) 2352

I. Song, Catal. Today. 44 (1998) 285

M.S. Kaba, I.K. Song, D.C. Duncan, C.L. Hill, M. a. Barteau, Inorg. Chem. 37 (1998) 398

M.S. Kaba, M.A. Barteau, W.Y. Lee, I.K. Song, Appl. Catal. A Gen. 194 (2000) 129

I.K. Song, R.B. Shnitser, J.J. Cowan, C.L. Hill, M.A. Barteau, Inorg. Chem. 41 (2002) 1292

I.K. Song, M.A. Barteau, J. Mol. Catal. A Chem., 182-183 (2002) 185

M. Rivera, S. Holguin, A. Moreno, J.D. Sepúlveda-Sánchez, T. Hernández-Pérez, J. Electrochem. Soc. 149 (2002) E84

I.K. Song, M.A. Barteau, Korean J. Chem. Eng. 19 (2002) 567

T. Hernández-Pérez, S. Holguín, M. Rivera, J. Appl. Electrochem. 34 (2004) 601

S.-H. Choi, J.-W. Kim, Bull. Korean Chem. Soc. 30 (2009) 810

G. Brauer, Handbuch der Preparativen Anorganischen Chemie, Ferdinand Enke Ferlag, Stuttgart, 1981

I. Holclajtner-Antunović, D. Bajuk-Bogdanović, A. Popa, S. Uskoković-Marković, Inorganica Chim. Acta. 383 (2012) 26

B. Todorović-Marković, S. Jovanović, V. Jokanović, Z. Nedić, M. Dramićanin, Z. Marković, Appl. Surf. Sci. 255 (2008) 3283

Gwyddion, http://www.gwyddion.net (accessed February 15th, 2016)

M.S. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (2010) 5355

A.C. Ferrari, Solid State Commun. 143 (2007) 47

C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, Inorg. Chem. 22 (1983) 207

F.D. Hardcastle, I.E. Wachs, J. Raman Spectrosc. 21 (1990) 683

A. Jorio, M. S. Dresselhaus, R. Saito, G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, Wiley-VCH Verlag, New York, 2011

H. Ratajczak, A. J. Barnes, A. Bielański, H. D. Lutz, A. Müller, Vibrational Spectroscopy of Heteropoly Acids, in: Polyoxometalate Chemistry From Topology via Self-Assembly to Applications, A. Müller , M. T. Pope (Ed)s., Springer Netherlands, Amsterdam, Netherlands, 2001, p. 101

U. Mioč, M. R. Todorović, M. Davidović, Ph. Colomban, I.Holclajtner-Antunović, Solid State Ionics 176 (2005) 3005

U.B. Mioč, M. Petković, M. Davidović, M. Perić, T. Abdul-Redah, J. Mol. Struct. 885 (2008) 131

S. Damyanova, L.M. Gomez, M.A. Bañares, J.L.G. Fierro, Chem. Mater. 12 (2000) 501

C.-Y. Lee, A.M. Bond, Anal. Chem. 81 (2009) 584.

DOI: https://doi.org/10.2298/JSC160301055V

Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)