Arsenic in Bosnia and Herzegovina market seafood: Effects of matrix modifiers on measured concentration
Main Article Content
Abstract
Arsenic concentration in seafood could potentially reach very high levels and represent a significant health risk for humans. In this study, the concentration of arsenic in various seafood: crabs (shrimp, prawns), molluscs (mussels), and cephalopods (squid) available both fresh on the market and frozen in supermarkets in Sarajevo, Bosnia and Herzegovina were determined by the electrothermal atomic absorption spectrometry (ETAAS). The results obtained using different matrix modifiers: Mg(NO3)2, Ni(NO3)2, Pd(NO3)2, and mixture [Pd(NO3)2 + Mg(NO3)2] were compared. The best recovery rate of 98.4 % arsenic for the reference material ERM-CE278k, was achieved after the addition of the mixture [Pd(NO3)2 + Mg(NO3)2]. The mean arsenic concentrations were 1.551 ± 0.836 mg kg-1 1.298 ± 0.410 mg kg-1, and 2.794 ± 0.958 mg kg-1 for crustaceans, molluscs and cephalopods, respectively, by using mixture [Pd(NO3)2 + Mg(NO3)2] as matrix modifier. Arsenic concentrations in the same sample measured using different matrix modifiers varied widely, even above 70 %. With the current consumption rate of seafood products, both cancerogenic and non-cancerogenic risks associated with exposure to arsenic through seafood are very low for the residents of Bosnia and Herzegovina.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
U.S. DA and U.S. HHS: Dietary Guidelines for Americans 2020-2025 (2020)
E. B. Rimm, L. J. Appel, S. E. Chiuve, L. Djoussé, M. B. Engler, P. M. Kris-Etherton, D. Mozaffarian, D. S. Siscovick, A. H. Lichtenstein, Circulation 138 (2018) e35 (https://doi.org/10.1161/CIR.0000000000000574)
EFSA NDA PANEL: Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury (2014).
D. J. H. Phillips, P. S. Rainbow, Biomonitoring of Trace Aquatic Contaminants, Elsevier, London, UK, 1993
W. L. Schoolmeester, D. R. White, South Med. J. 73 (1980) 198 (https://doi.org/10.1097/00007611-198002000-00021)
P. B. Tchounwou, A. K. Patlolla, J. A. Centeno, Toxicol. Pathol. 31 (2003) 575 (https://doi.org/10.1080/01926230390242007)
C. R. Tyler, A. M. Allan, Curr Environ. Health Rep. 1 (2014) 132 (https://doi.org/10.1007/s40572-014-0012-1)
G. Chiocchetti, C. Jadán-Piedra, D. Vélez, V. Devesa, Crit. Rev. Food Sci. Nutr. 57 (2017) 3715 (https://doi.org/10.1080/10408398.2016.1161596)
S. Naess, I. Aakre, A. K. Lundebye, R. Ornsrud, M. Kjellevold, M. W. Markhus, L. Dahl, Food Addit. Contam. B 13 (2020) 99. https://doi.org/10.1080/19393210.2020.1735533)
IARC: Arsenic and inorganic arsenic compounds (1973)
B. C. Chen, W. C. Chou, W. Y. Chen, C. M. Liao, J. Hazard. Mater. 181 (2010) 161 (https://doi.org/10.1016/j.jhazmat.2010.04.112)
P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, D. J. Sutton, Heavy Metal Toxicity and the Environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum 101 (2012) 133, Springer, Basel (https://doi.org/10.1007/978-3-7643-8340-4_6)
M. Molin, S. M. Ulven, H. M. Meltzer, J. Alexander, J. Trace Elem. Med. Biol. 31 (2015) 249 (https://doi.org/10.1016/j.jtemb.2015.01.010)
H. Amlund, J. J. Sloth, in Encyclopedia of Environ. mental health, J. O. Nriagu, Ed., Elsevier, Burlington, 2011, p. 145 (https://doi.org/10.1016/b978-0-444-52272-6.00344-5)
M. Bonsignore, D. S. Manta, S. Mirto, E. M. Quinci, F. Ape, V. Montalto, M. Gristina, A. Traina, M. Sprovieri, EcoToxicol. Environ. Saf. 162 (2018) 554 (https://doi.org/10.1016/j.ecoenv.2018.07.044)
G. Falco, J. M. Llobet, A. Bocio, J. L. Domingo, J. Agric. Food Chem. 54 (2006) 6106 (https://doi.org/10.1021/jf0610110)
Dz. Hajric, M. Smajlovic, B. Antunovic, A. Smajlovic, D. Alagic, D. Tahirovic, D. Brenjo, E. Clanjak-Kudra, J. Djedjibegovic, A. Porobic, V. Poljak, Food Control 133 (2022) 108631 (https://doi.org/10.1016/j.foodcont.2021.108631)
O. Munoz, V. Devesa, M. A. Suner, D. Velez, R. Montoro, I. Urieta, M. L. Macho, M. Jalón, J. Agric. Food Chem. 48 (2000) 4369 (https://doi.org/10.1021/jf000282m)
F. Conte, C. Copat, S. Longo, G. O. Conti, A. Grasso, G. Arena, M. V. Brundo, M. Ferrante, Food Chem. Toxicol. 81 (2015) 143 (https://doi.org/10.1016/j.fct.2015.04.020)
R. M. Lorenzana, A. Y. Yeow, J. T. Colman, L. L. Chappell, H. Choudhury, Hum. Ecol. Risk Assess 15 (2009) 185 (https://doi.org/10.1080/10807030802615949)
F. Cubadda, B. P. Jackson, K. L. Cottingham, Y. O. Van Horne, M. Kurzius-Spencer, Sci. Total Environ. 579 (2017) 1228 (https://doi.org/10.1016/j.scitotenv.2016.11.108)
S. C. Wilschefski, M. R. Baxter, Clin. BioChem. Rev. 40 (2019) 115 (https://doi.org/10.33176/AACB-19-00024)
A. B. Volynskii, J. Anal. Chem. 58 (2003) 905 (https://doi.org/10.1023/A:1026115330513)
U.S. EPA Method 7010: Graphite Furnace Atomic Absorption Spectrophotometry (2007)
D. C. Manning, W. Slavin, Appl. Spectrosc. 37 (1983) 1 (https://doi.org/10.1366/0003702834634262)
A. B. Volynsky, Spectrochim. Acta Part B At. Spectrosc. 55 (2000) 103 (https://doi.org/10.1016/S0584-8547(99)00175-5)
B. Welz, G. Schlemmer, J. R. Mudakavi, J. Anal. At. Spectrom. 7 (1992) 1257 (https://doi.org/10.1039/JA9920701257)
D. Juresa, M. Blanusa, Food Addit. Contam. 20 (2003) 241 (https://doi.org/10.1080/0265203021000055379)
J. Djedjibegovic, A. Marjanovic, D. Tahirovic, K. Caklovica, A. Turalic, A. Lugusic, E. Omeragic, M. Sober, F. Caklovica, Sci. Rep. 10 (2020) 13238 (https://doi.org/10.1038/s41598-020-70205-9)
EPA: EPA Region III risk-based concentration table (1995)
FAOSTAT: Food Balance Sheet (2018)
U.S. EPA, CASRN 7440-38-2: IRIS (Integrated Risk Information System) Assessment Summary Arsenic, inorganic (2002)
Bosnia and Herzegovina: Regulation on maximum levels for certain contaminants in food (2018)
M. Ferrante, S. Napoli, A. Grasso, P. Zuccarello, A. Cristaldi, C. Copat, Food Chem. Toxicol. 126 (2019) 322 (https://doi.org/10.1016/j.fct.2019.01.010)
M. Yabanli, I. Sener, A. Yozukmaz, S. Öner, H. H. Yapıcı, Environ. Sci. Pollut. Res. 28 (2021) 53171 (https://doi.org/10.1007/s11356-021-14569-z)
U.S. EPA: Risk Assessment Guidance for Superfund Volume I (2010)
U.S. EPA: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories Volume 2. (2000)
P. Olmedo, A. Pla, A. F. Hernández, F. Barbier, L. Ayouni, F. Gil, Environ. Int. 59 (2013) 63 (https://doi.org/10.1016/j.envint.2013.05.005)
X. Wu, M. Gao, L. Wang, Y. Luo, R. Bi, L. Li, L. Xie, Ecotoxicol. Environ. Saf. 102 (2014) 168 (https://doi.org/10.1016/j.ecoenv.2014.01.028)
D. Ramon, D. Morick, P. Croot, R. Berzak, A. Scheinin, D. Tchernov, N. Davidovich, M. Britzi, J. Food Sci. 86 (2021) 1153 (https://doi.org/10.1111/1750-3841.15627)
N. Bilandzic, M. Sedak, B. Calopek, N. Dzafic, D. Misetic Ostojic, D. Potocnjak, Bull Environ. Contam. Toxicol. 95 (2015) 611 (https://doi.org/10.1007/s00128-015-1619-0)
J. Markovic, D. Joksimovic, S. Stankovic, Arch. Biol. Sci. 64 (2012) 265 (https://doi.org/10.2298/ABS1201265M)
N. J. Novakov, B. D. Kartalovic, Z. A. Mihaljev, K. M. Mastanjevic, N. S. Stojanac, K. J. Habschied, Food Addit. Contam. B 14 (2021) 219 (https://doi.org/10.1080/19393210.2021.1931475).