Influence of microalgae on organic micropollutants removal from water by powdered activated carbon

Main Article Content

Nadiia Khakimova
https://orcid.org/0000-0003-0597-1845
Minja Bogunović Koljaja
https://orcid.org/0000-0003-2403-6094
Jelica Simeunović
https://orcid.org/0000-0002-4049-0724
Lucas Landwehrkamp
https://orcid.org/0000-0003-2200-9658
Stefan Panglisch
https://orcid.org/0000-0001-6605-5010
Ivana Ivančev-Tumbas
https://orcid.org/0000-0002-7754-5573

Abstract

This study investigates how two morphologically distinct microalgae, Chlorella vulgaris and Arthrospira platensis, at different growth phases, affect the adsorption of ibuprofen, caffeine, and diclofenac onto two powdered activated carbons (AC1 and AC2). Experiments were utilizing dechlorinated tap water (DCTW) matrix where microalgae were added. Experiments were performed with/without pre-chlorination and with/without filtration through 0.45 µm filter to assess the influence of total and dissolved algal organic matter. Organic micropollutants (OMPs) were analyzed using gas chromatography coupled with mass spectrometry. Results indicate that the effect of microalgae morphology on OMPs’ removal efficiency is different for different carbons. Species and growth phase-dependent variations were observed in some cases. A. platensis in the stationary phase in the water reduced diclofenac removal by AC2 (from 99 % to range of 44 %–62 %), while C. vulgaris in the exponential phase reduced it to the range of 16 %–74 % in comparison to effectiveness of AC2 in DCTW without microalgae (99%). Removal of uncharged caffeine remained stable, suggesting minimal influence from algal matrices or AC variability. For negatively charged ibuprofen and diclofenac the observed effects were more variable and not always consistent, likely due to limitations in experimental methodologies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Khakimova, M. Bogunović Koljaja, J. Simeunović, L. Landwehrkamp, S. Panglisch, and I. Ivančev-Tumbas, “Influence of microalgae on organic micropollutants removal from water by powdered activated carbon”, J. Serb. Chem. Soc., Sep. 2025.
Section
Environmental Chemistry

Funding data

References

P. A. Inostroza, R. Massei, R. Wild, M. Krauss, W. Brack, Environ. Pollut. 231 (2017) 339 (https://doi.org/10.1016/j.envpol.2017.08.015)

S. Finckh, E. Carmona, D. Borchardt, O. Büttner, M. Krauss, T. Schulze, S. Yang, W. Brack, Environ. Int. 183 (2024) 108371 (https://doi.org/10.1016/j.envint.2023.108371)

Y. Luo, W. Guo, H. H. Ngo, L. D Nghiem, F. I Hai, J. Zhang, J. Liang, X. Wang, Sci. Total Environ. 473–474 (2014) 619–641 (https://doi.org/10.1016/j.scitotenv.2013.12.065)

T. Di Lorenzo, M. Cifoni, M. Baratti, G. Pieraccini, W. D. Di Marzio, D. M. P. Galassi, Environ. Pollut. 287 (2021) 117315 (https://doi.org/10.1016/j.envpol.2021.117315)

D. Sang, N. Cimetiere, S. Giraudet, R. Tan, D. Wolbert, P. Le Cloirec J. Water Process Eng. 49 (2022) 103190 (https://doi.org/10.1016/j.jwpe.2022.103190)

M. Huerta-Fontela, M. T. Galceran, F. Ventura, Water Res. 45 (2011) 1432 (https://doi.org/10.1016/j.watres.2010.10.036)

P. Schumann, M. Muschket, D. Dittmann, L. Rabe, T. Reemtsma, M. Jekel, A. S. Ruhl, Water Res., 235 (2023) 119861 (https://doi.org/10.1016/j.watres.2023.119861)

J. P. Gutkoski, E. E. Schneider, C. Michels, J. Environ. Manag. 349 (2024) 119434 (https://doi.org/10.1016/j.jenvman.2023.119434)

M. Campinas, C. Silva, R. M. C Viegas, R. Coelho, H. Lucas, M. J. Rosa, J. Water Process Eng. 40 (2021) 101833 (https://doi.org/10.1016/j.jwpe.2020.101833)

R. Guillossou, J. Le Roux, R. Mailler, C. S. Pereira-Derome, G. Varrault, A. Bressy, E. Vulliet, C. Morlay, F. Nauleau, V. Rocher, J. Gasperi, Water Res. 172 (2020) 115487 (https://doi.org/10.1016/j.watres.2020.115487)

M. Pivokonsky, I. Kopecka, L. Cermakova, K. Fialova, K. Novotna, T. Cajthaml, R. K. Henderson, L. Pivokonska, Sci. Total Environ. 799 (2021) 149455 (https://doi.org/10.1016/j.scitotenv.2021.149455)

Q. Li, V. L. Snoeyink, B. J. Mariñas, C. Campos, Water Res. 37 (2003) 4863 (https://doi.org/10.1016/j.watres.2003.08.018)

S. W. Nam, D. J. Choi, S. K. Kim, N. Her, K. D. Zoh, J. Hazard. Mater. 270 (2014) 144 (https://doi.org/10.1016/j.jhazmat.2014.01.037)

M. Pivokonsky, J. Naceradska, I. Kopecka, M. Baresova, B. Jefferson, X. Li, R. K. Henderson, Crit. Rev. Environ. Sci. Technol. 46 (2016) 291 (https://doi.org/10.1080/10643389.2015.1087369)

Y. Zhang, X. Wang, H. Jia, B. Fu, R. Xu, and Q. Fu, Sci. Total Environ. 671 (2019) 351 (https://doi.org/10.1016/j.scitotenv.2019.03.371)

W. W. Carmichael, J. Appl. Bacteriol. 72 (1992) 445 (https://doi.org/10.1111/j.1365-2672.1992.tb01858.x)

L. de S. Leite, L. A. Daniel, T. Bond, Environ. Sci. Water Res. Technol. 9 (2023) 2787 (https://doi.org/10.1039/D3EW00674C)

J. Fan, L. Rao, Y. T. Chiu, T. F. Lin, Water Res. 102 (2016) 394 (https://doi.org/10.1016/j.watres.2016.06.053)

T. Garoma, R. E. Yazdi, BMC Plant Biol. 19 (2019) 18 (https://doi.org/10.1186/s12870-018-1614-9)

L. Tian, Z. Zhang, Z. Wang, P. Zhang, C. Xiong, Y. Kuang, X. Peng, M. Yu, Y. Qian, Front. Environ. Sci. 11 (2023) 1112522 (https://doi.org/10.3389/fenvs.2023.1112522)

M. Yu, Y. Qian, M. Ni, Z. Wang, P. Zhang, Chemosphere 354 (2024) 141733 (https://doi.org/10.1016/j.chemosphere.2024.141733)

M. Ma, R. Liu, H. Liu, J. Qu, J. Water Supply: Res. Technol. – AQUA 56 (2007) 41 (https://doi.org/10.2166/aqua.2007.062)

S. Laksono, I. M. ElSherbiny, S. A. Huber, S. Panglisch, Chem. Eng. J. 420 (2021) 127723 (https://doi.org/10.1016/j.cej.2020.127723)

K.-Y. Park, S.-Y. Choi, S.-K. Ahn, J.-H. Kweon, J. Hazard. Mater. 408 (2021) 124864 (https://doi.org/10.1016/j.jhazmat.2020.124864)

P. Cuderman, E. Heath, Anal. Bioanal. Chem. 387 (2006) 1343 (https://doi.org/10.1007/s00216-006-0927-y)

US EPA Method 525.3: Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction And Capillary Column Gas Chromatography/ Mass Spectrometry (GC/MS) (2012)

P. Westerhoff, Y. Yoon, S. Snyder, E. Wert, Environ. Sci. Tech. 39 (2005) 6649 (https://doi.org/10.1021/es0484799)

S. A. Snyder, S. Adham, A. M. Redding, F. S. Cannon, J. DeCarolis, J. Oppenheimer, E. C. Wert, Y. Yoon, Desalination 202 (2007) 156 (https://doi.org/10.1016/j.desal.2005.12.052)

S. Piel, S. Blondeau, J. Pérot, E. Baurès, O. Thomas, Water Qual. Res. J. 48 (2013) 121 (https://doi.org/10.2166/wqrjc.2013.138)

C. Safi, B. Zebib, O. Merah, P. Y. Pontalier, C. Vaca-Garcia, Renew. Sustain. Energy Rev. 35 (2014) 265 (https://doi.org/10.1016/j.rser.2014.04.007)

B. Maddiboyina, H. K. Vanamamalai, H. Roy, Ramaiah, S. Gandhi, M. Kavisri, M. Moovendhan, J. Basic Microbiol. 63 (2023) 573 (https://doi.org/10.1002/jobm.202200704)

S. C. Silva, T. Almeida, G. Colucci, A. Santamaria-Echart, Y. A. Manrique, M. M. Dias, L. Barros, Â. Fernandes, E. Colla, M. F. Barreiro, Colloids Surf. A: Physicochem. Eng. Asp. 648 (2022) 129264 (https://doi.org/10.1016/j.colsurfa.2022.129264)

S. Ebrahimzadeh, B. Wols, A. Azzellino, F. Kramer, J. P. van der Hoek, J. Water Process Eng. 47 (2022) 102792 (https://doi.org/10.1016/j.jwpe.2022.102792).