Influence of microalgae on organic micropollutants removal from water by powdered activated carbon Scientific paper

Main Article Content

Nadiia Khakimova
https://orcid.org/0000-0003-0597-1845
Minja Bogunović Koljaja
https://orcid.org/0000-0003-2403-6094
Jelica Simeunović
https://orcid.org/0000-0002-4049-0724
Lucas Landwehrkamp
https://orcid.org/0000-0003-2200-9658
Stefan Panglisch
https://orcid.org/0000-0001-6605-5010
Ivana Ivančev-Tumbas
https://orcid.org/0000-0002-7754-5573

Abstract

This study investigates how two morphologically distinct microalgae, Chlorella vulgaris and Arthrospira platensis, at different growth phases, affect the adsorption of ibuprofen, caffeine and diclofenac onto two powdered activ­ated carbons (AC1 and AC2). Dechlorinated tap water (DCTW) matrix was used with microalgae added and experiments were performed with/without pre-chlorination and with/without filtration through 0.45 µm filter to assess the inf­luence of total and dissolved algal organic matter. Organic micropollutants (OMPs) were analyzed using gas chromatography coupled with mass spectro­metry. Results indicate that the effect of microalgae morphology on OMPs’ rem­oval efficiency is different for different carbons. Species and growth phase-dep­endent variations were observed in some cases. A. platensis in the stationary phase in the water reduced diclofenac removal by AC2 (from 99 % to range of 44–62 %), while C. vulgaris in the exponential phase reduced it to the range of 16–74 % in comparison to effectiveness of AC2 in DCTW without microalgae (99 %). Removal of uncharged caffeine remained stable, suggesting minimal inf­luence from algal matrices or AC variability. For negatively charged ibuprofen and diclofenac the observed effects were more variable and not always con­sist­ent, likely due to limitations in experimental methodologies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Khakimova, M. Bogunović Koljaja, J. Simeunović, L. Landwehrkamp, S. Panglisch, and I. Ivančev-Tumbas, “Influence of microalgae on organic micropollutants removal from water by powdered activated carbon: Scientific paper”, J. Serb. Chem. Soc., Dec. 2025.
Section
Environmental Chemistry

Funding data

References

P. A. Inostroza, R. Massei, R. Wild, M. Krauss, W. Brack, Environ. Pollut. 231 (2017) 339 (https://doi.org/10.1016/j.envpol.2017.08.015)

S. Finckh, E. Carmona, D. Borchardt, O. Büttner, M. Krauss, T. Schulze, S. Yang, W. Brack, Environ. Int. 183 (2024) 108371 (https://doi.org/10.1016/j.envint.2023.108371)

Y. Luo, W. Guo, H. H. Ngo, L. D Nghiem, F. I Hai, J. Zhang, J. Liang, X. Wang, Sci. Total Environ. 473–474 (2014) 619 (https://doi.org/10.1016/j.scitotenv.2013.12.065)

T. Di Lorenzo, M. Cifoni, M. Baratti, G. Pieraccini, W. D. Di Marzio, D. M. P. Galassi, Environ. Pollut. 287 (2021) 117315 (https://doi.org/10.1016/j.envpol.2021.117315)

D. Sang, N. Cimetiere, S. Giraudet, R. Tan, D. Wolbert, P. Le Cloirec J. Water Process Eng. 49 (2022) 103190 (https://doi.org/10.1016/j.jwpe.2022.103190)

M. Huerta-Fontela, M. T. Galceran, F. Ventura, Water Res. 45 (2011) 1432 (https://doi.org/10.1016/j.watres.2010.10.036)

P. Schumann, M. Muschket, D. Dittmann, L. Rabe, T. Reemtsma, M. Jekel, A. S. Ruhl, Water Res. 235 (2023) 119861 (https://doi.org/10.1016/j.watres.2023.119861)

J. P. Gutkoski, E. E. Schneider, C. Michels, J. Environ. Manage. 349 (2024) 119434 (https://doi.org/10.1016/j.jenvman.2023.119434)

M. Campinas, C. Silva, R. M. C Viegas, R. Coelho, H. Lucas, M. J. Rosa, J. Water Process Eng. 40 (2021) 101833 (https://doi.org/10.1016/j.jwpe.2020.101833)

R. Guillossou, J. Le Roux, R. Mailler, C. S. Pereira-Derome, G. Varrault, A. Bressy, E. Vulliet, C. Morlay, F. Nauleau, V. Rocher, J. Gasperi, Water Res. 172 (2020) 115487 (https://doi.org/10.1016/j.watres.2020.115487)

M. Pivokonsky, I. Kopecka, L. Cermakova, K. Fialova, K. Novotna, T. Cajthaml, R. K. Henderson, L. Pivokonska, Sci. Total Environ. 799 (2021) 149455 (https://doi.org/10.1016/j.scitotenv.2021.149455)

Q. Li, V. L. Snoeyink, B. J. Mariñas, C. Campos, Water Res. 37 (2003) 4863 (https://doi.org/10.1016/j.watres.2003.08.018)

S. W. Nam, D. J. Choi, S. K. Kim, N. Her, K. D. Zoh, J. Hazard. Mater. 270 (2014) 144 (https://doi.org/10.1016/j.jhazmat.2014.01.037)

M. Pivokonsky, J. Naceradska, I. Kopecka, M. Baresova, B. Jefferson, X. Li, R. K. Henderson, Crit. Rev. Environ. Sci. Technol. 46 (2016) 291 (https://doi.org/10.1080/10643389.2015.1087369)

Y. Zhang, X. Wang, H. Jia, B. Fu, R. Xu, and Q. Fu, Sci. Total Environ. 671 (2019) 351 (https://doi.org/10.1016/j.scitotenv.2019.03.371)

W. W. Carmichael, J. Appl. Bacteriol. 72 (1992) 445 (https://doi.org/10.1111/j.1365-2672.1992.tb01858.x)

L. de S. Leite, L. A. Daniel, T. Bond, Environ. Sci. Water Res. Technol. 9 (2023) 2787 (https://doi.org/10.1039/D3EW00674C)

J. Fan, L. Rao, Y. T. Chiu, T. F. Lin, Water Res. 102 (2016) 394 (https://doi.org/10.1016/j.watres.2016.06.053)

T. Garoma, R. E. Yazdi, BMC Plant Biol. 19 (2019) 18 (https://doi.org/10.1186/s12870-018-1614-9)

L. Tian, Z. Zhang, Z. Wang, P. Zhang, C. Xiong, Y. Kuang, X. Peng, M. Yu, Y. Qian, Front. Environ. Sci. 11 (2023) 1112522 (https://doi.org/10.3389/fenvs.2023.1112522)

M. Yu, Y. Qian, M. Ni, Z. Wang, P. Zhang, Chemosphere 354 (2024) 141733 (https://doi.org/10.1016/j.chemosphere.2024.141733)

M. Ma, R. Liu, H. Liu, J. Qu, J. Water Supply: Res. Technol. – AQUA 56 (2007) 41 (https://doi.org/10.2166/aqua.2007.062)

S. Laksono, I. M. ElSherbiny, S. A. Huber, S. Panglisch, Chem. Eng. J. 420 (2021) 127723 (https://doi.org/10.1016/j.cej.2020.127723)

K.-Y. Park, S.-Y. Choi, S.-K. Ahn, J.-H. Kweon, J. Hazard. Mater. 408 (2021) 124864 (https://doi.org/10.1016/j.jhazmat.2020.124864)

P. Cuderman, E. Heath, Anal. Bioanal. Chem. 387 (2006) 1343 (https://doi.org/10.1007/s00216-006-0927-y)

US EPA Method 525.3, Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction And Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS), Washington, DC, 2012

P. Westerhoff, Y. Yoon, S. Snyder, E. Wert, Environ. Sci. Tech. 39 (2005) 6649 (https://doi.org/10.1021/es0484799)

S. A. Snyder, S. Adham, A. M. Redding, F. S. Cannon, J. DeCarolis, J. Oppenheimer, E. C. Wert, Y. Yoon, Desalination 202 (2007) 156 (https://doi.org/10.1016/j.desal.2005.12.052)

S. Piel, S. Blondeau, J. Pérot, E. Baurès, O. Thomas, Water Qual. Res. J. 48 (2013) 121 (https://doi.org/10.2166/wqrjc.2013.138)

C. Safi, B. Zebib, O. Merah, P. Y. Pontalier, C. Vaca-Garcia, Renew. Sustain. Energy Rev. 35 (2014) 265 (https://doi.org/10.1016/j.rser.2014.04.007)

B. Maddiboyina, H. K. Vanamamalai, H. Roy, Ramaiah, S. Gandhi, M. Kavisri, M. Moovendhan, J. Basic Microbiol. 63 (2023) 573 (https://doi.org/10.1002/jobm.202200704)

S. C. Silva, T. Almeida, G. Colucci, A. Santamaria-Echart, Y. A. Manrique, M. M. Dias, L. Barros, Â. Fernandes, E. Colla, M. F. Barreiro, Colloids Surfaces, A 648 (2022) 129264 (https://doi.org/10.1016/j.colsurfa.2022.129264)

S. Ebrahimzadeh, B. Wols, A. Azzellino, F. Kramer, J. P. van der Hoek, J. Water Process Eng. 47 (2022) 102792 (https://doi.org/10.1016/j.jwpe.2022.102792).