Study of pyrolysis of high density polyethylene in the open system and estimation of its capability for co-pyrolysis with lignite
Main Article Content
Abstract
Pyrolysis of high density polyethylene (HDPE) in the open system was studied. A plastic bag for food packing was used as a source of HDPE. Pyrolysis was performed at temperatures of 400, 450 and 500 °C, which were chosen based on thermogravimetric analysis. The HDPE pyrolysis yielded liquid, gaseous and solid products. Temperature rise resulted in the increase of conversion of HDPE into liquid and gaseous products. The main constituents of liquid pyrolysates are 1-n-alkenes, n-alkanes and terminal n-dienes. The composition of liquid products indicates that the performed pyrolysis of HDPE could not serve as a standalone operation for the production of gasoline or diesel, but preferably as a pre-treatment to yield a product to be blended into a refinery or petrochemical feed stream. The advantage of a liquid pyrolysate in comparison to crude oil is the extremely low content of aromatic hydrocarbons and the absence of polar compounds. The gaseous products have desirable composition and consist mainly of methane and ethene. The solid residues do not produce ash by combustion and have high calorific values. Co-pyrolysis of HDPE with mineral-rich lignite indicated positive synergetic effect at 450 and 500 °C, which is reflected through the increased experimental yields of liquid and gaseous products in comparison to theoretical ones.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Kumar, R. K. Singh, Braz. J. Chem. Eng. 28 (2011) 659
S. Kumar, A. K. Panda, R. K. Singh, Resour., Conserv. Recycl. 55 (2011) 893
P. N. Sharratt, Y. H. Lin, A. A. Garforth, J. Dwyer, Ind. Eng. Chem. Res. 36 (1997) 118
J. W. Park, J. H. Kim, G. Seo, Polym. Degrad. Stab. 76 (2002) 495
S. Ali, A. A. Garforth, D. H. Harris, D. J. Rawlence, Y. Uemichi, Catal. Today 75 (2002) 247
A. Aboulkas, T. Makayssi, L. Bilali, K. El Harfi, M. Nadifiyine, M. Benchanaa, Fuel Process. Technol. 96 (2012) 209
S. Matali, N. A. Rahman, S. S. Idris, A. B. Alias, M. R. Mohatar, J. Teknol. 76 (2015) 21
J. Cai, Y. Wang, L. Zhou, Q. Huang, Fuel Process. Technol. 89 (2008) 21
S. Melendi-Espina, R. Alvarez, M. A. Diez, M. D. Casal, Fuel Process. Technol. 137 (2015) 351
L. Ballice, Fuel Process. Technol. 86 (2005) 673
M. Sert, L. Ballice, M. Yüksel, M. Sağlam, Oil Shale 26 (2009) 463
H. Pakdel, C. Roy, W. Kalkreuth, Fuel 78 (1999) 365
N. Vuković, D. Životić, J. G. Mendonça Filho, T. Kravić-Stevović, M. Hámor-Vidó, J. de Oliveira Mendonça, K. Stojanović, Int. J. Coal Geol. 154–155 (2016) 213
G. Đ. Gajica, A. M. Šajnović, K. A. Stojanović, M. D. Antonijević, N. M. Aleksić, B. S. Jovančićević, J. Serb. Chem. Soc. 82 (2017) 1461
V. V. Antić, M. P. Antić, A. Kronimus, K. Oing, J. Schwarzbauer, J. Anal. Appl. Pyrolysis 90 (2011) 93
V. V. Antić, M. P. Antić, A. Kronimus, J. Schwarzbauer, Hem. Ind. 66 (2012) 357
N. A. al Sandouk-Lincke, J. Schwarzbauer, V. Antić, M. Antić, J. Caase, S. Grünelt, K. Reßing, R. Littke, Org. Geochem. 88 (2015) 17
S. Khedri, S. Elyasi, Polym. Degrad. Stab. 129 (2016) 306
D. Mitrović, N. Đoković, D. Životić, A. Bechtel, A. Šajnović, K. Stojanović, Int. J. Coal Geol. 168 (2016) 80
N. Đoković, D. Mitrović, D. Životić, D. Španić, T. Troskot-Čorbić, O. Cvetković, K. Stojanović, J. Serb. Chem. Soc. 80 (2015) 575
D. Životić, K. Stojanović, I. Gržetić, B. Jovančićević, O. Cvetković, A. Šajnović, V. Simić, R. Stojaković, G. Scheeder, Int. J. Coal Geol. 111 (2013) 5
G. H. Taylor, M. Teichmüller, A. Davis, C. F. K. Diessel, R. Littke, P. Robert, Organic Petrology, Gebrüder Borntraeger, Berlin, 1998
L. J. Thomas, Coal Geology, John Wiley & Sons, Ltd, Chichester, 2002
M. Kutz, Handbook of Environmental Degradation of Materials, 2nd ed., Elsevier Inc., Oxford, 2012
B. P. Tissot, D. H. Welte, Petroleum Formation and Occurrence, 2nd ed., Springer-
-Verlag, Heidelberg, 1984
J. A. González-Pérez, N. T. Jiménez-Morillo, J. M. de la Rosa, G. Almendros, F. J. González-Vila, J. Chromatogr., A 1388 (2015) 236
E. E. Bray, E. D. Evans, Geochim. Cosmochim. Acta 22 (1961) 2
K. E. Peters, C. C. Walters, J. M. Moldowan, The Biomarker Guide, Volume 1: Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, Cambridge, 2005
A. Kostić, Thermal evolution of organic matter and petroleum generation modelling in the Pannonian basin (Serbia), Faculty of Mining and Geology, Belgrade, 2010 (in Serbian)
J. A. Onwudili, N. Insura, P. T. Williams, J. Anal. Appl. Pyrolysis 86 (2009) 293
C. A. Wilkie, Polym. Degrad. Stab. 66 (1999) 301
S. Singh, C. Wu, P. T. Williams, J. Anal. Appl. Pyrolysis 94 (2012) 99
M. Arias, I. Penichet, F. Ysambertt, R. Bauzab, M. Zougagh, Á. Ríos, J. Supercrit. Fluids 50 (2009) 22
S. Hosokai, K. Matsuoka, K. Kuramoto, Y. Suzuki, Fuel Process. Technol. 152 (2016) 399
A. Demirbaş, Energy Convers. Manage. 42 (2001) 183
H. H. Lowry, Chemistry of Coal Utilization, Vol. I, John Wiley & Sons Inc., New York, 1947
F. Schuster, Brennst.-Chem. 25 (1934) 45
E. S. Grummel, I. Davies, Fuel 12 (1933) 199
J. Han, X. Yao, Y. Zhan, S-Y. Oh, L-H. Kim, H-J. Kim, J. Energy Inst. 90 (2017) 331
K. Annamalai, J. Sweeten, S. Ramalingam, Trans. ASAE 30 (1987) 1205
S. Kathiravale, M. N. M. Yunus, K. Sopian, A. Samsuddin, R. Rahman, Fuel 82 (2003) 1119
D. A. Tsiamis, M. J. Castaldi, Determining accurate heating values of non-recycled plastics (NRP), Earth Engineering Center City, University of New York, New York, 2016
Environment & Plastics Industry Council (EPIC) a council of the Canadian Plastics Industry Association (CPIA), A Review of the Options for the Thermal Treatment of Plastics, CPIA, Mississauga, Ontario, 2004
N. J. Themelis, M. J. Castaldi, J. Bhatti, L. Arsova, Energy and economic value of non¬recycled plastics (NRP) and municipal solid wastes (MSW) that are currently landfilled in the fifty states, Earth Engineering Center, Columbia University, New York, 2011
Fuels higher calorific values, http://www.eisco.co/burner/fuels%20higher%20calo-rific%20values.pdf (last accessed February 5, 2018)
S. L. Wong, N. Ngadi, T. A. T. Abdullah, I. M. Inuwa, Renewable Sustainable Energy Rev. 50 (2015) 1167.
Abdullah, I.M. Inuwa, Renew. Sust. Energ. Rev. 50 (2015) 1167.