Deashing and desulfurization of subbituminous coal from the East field (Bogovina Basin, Serbia) – Insights from chemical leaching Scientific paper

Main Article Content

Katarina R. Pantović Spajić
https://orcid.org/0000-0003-1520-1334
Branislav Marković
https://orcid.org/0000-0001-9477-8267
Miroslav M. Pavlović
https://orcid.org/0000-0003-3754-4143
Miroslav Sokić
https://orcid.org/0000-0002-4468-9503
Snežana Zildžović
https://orcid.org/0000-0002-0214-8119
Nataša Đorđević
https://orcid.org/0000-0002-2353-6751
Ksenija Stojanović
https://orcid.org/0000-0002-5566-2648

Abstract

The study is focused on the determination of the most effective chemical leaching process for the simultaneous demineralization/deashing and desulfuri­zation of subbituminous coal from the Bogovina Basin. Coal was treated for 30 min, at different temperatures, using variable concentrations of hydro­chloric, nitric, acetic and citric acids; hydrogen peroxide, mixture of hyd­rogen peroxide and nitric acid (pH 2), as well as by the stepwise leaching pro­cess (nitric acid + mixture of hydrogen peroxide and nitric acid, pH 2). The changes in mineral composition, caused by the chemical leaching, are followed using X-ray diffraction, whereas alterations of coal organic matter are tracked by Fourier-transform infrared spectroscopy and the content of fixed carbon. Inorganic acid leaching, regardless of the temperature and acid concentration, enabled the successful deashing of coal, whereas the percent of desulfurization was insufficient. The organic acid leaching was not satisfactory for both, deashing and desulfurization. Leaching by H2O2 and H2O2/HNO3 mixture (pH 2) resulted in moderate desulfurization, but the ash reduction was low. The most suitable method for the simultaneous effective ash (78 wt.%) and the sulfur (66 wt. %) removal from Bogovina coal is the two-step leaching, com­bining 10 vol. % HNO3 and mixture of 35 vol. % H2O2/10 vol. % HNO3 of pH 2 at 60 °C.

Article Details

How to Cite
[1]
K. Pantović Spajić, “Deashing and desulfurization of subbituminous coal from the East field (Bogovina Basin, Serbia) – Insights from chemical leaching: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 11, pp. 1113-1126, Nov. 2021.
Section
Geochemistry

References

H. Dhawan, D. K. Sharma, Int. J. Coal Sci. Technol. 6 (2019) 169 (https://doi.org/10.1007/s40789-019-0253-6)

K. Goto, K. Yogo, T. Higashii, Appl. Energy 111 (2013) 710 (https://doi.org/10.1016/j.apenergy.2013.05.020)

F. Rubiera, A. Arenillas, B. Arias, J. J. Pis, I. Suárez-Ruiz, K. M. Steel, J. W. Patrick, Fuel 82 (2003) 2145 (https://doi.org/10.1016/S0016-2361(03)00181-9)

D. Životić, Coal Geology, University of Belgrade, Faculty of Mining and Geology, Bel¬grade, 2018 (in Serbian) (https://rgf.bg.ac.rs/Dokumenta/Publikacije/Biblioteka/Promocija_izdanja_katalog_2019.pdf)

A. Ali, S. K. Srivastava, R. Haque, Fuel 71 (1992) 835 (https://doi.org/10.1016/0016-2361(92)90139-F)

P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu, B. D. Pandey, Renew. Sustain. Energy Rev. 41 (2015) 745 (http://doi.org/10.1016/j.rser.2014.08.072)

D. K. Sharma, G. Wadhwa, World J. Microbiol. Biotechnol. 13 (1997) 29 (https://doi.org/10.1007/BF02770804)

M. Rahman, D. Pudasainee, R. Gupta, Fuel Process. Technol. 158 (2017) 35 (http://doi.org/10.1016/j.fuproc.2016.12.010)

M. Abdollahy, A. Z. Moghaddam, K. Rami, Fuel 85 (2006) 1117 (https://doi.org/10.1016/j.fuel.2005.10.011)

H. G. Alam, A. Z. Moghaddam, M. R. Omidkhah, Fuel Process. Technol. 90 (2009) 1 (http://doi.org/10.1016/j.fuproc.2008.06.009)

J. M. Andrés, A. C. Ferrando, L. Membrado, Energy Fuels 10 (1996) 425 (https://doi.org/10.1021/ef9501612)

K. M. Steel, J. Besida, T. A. O’Donnell, D. G. Wood, Fuel Process. Technol. 70 (2001) 193 (https://doi.org/10.1016/S0378-3820(01)00173-4)

K. M. Steel, J. W. Patrick, Fuel 82 (2003) 1917 (https://doi.org/10.1016/S0016-2361(03)00149-2)

E. Jorjani, H. G. Chapi, M. T. Khorami, Fuel Process. Technol. 92 (2011) 1898 (http://doi.org/10.1016/j.fuproc.2011.05.008)

K. M. Steel, J. Besida, T. A. O’Donnell, D.G. Wood, Fuel Process. Technol. 70 (2001) 171 (https://doi.org/10.1016/S0378-3820(01)00171-0)

S. Mukherjee, S. K. Srivastava, Energy Fuels 18 (2004) 1764 (https://doi.org/10.1021/ef0499731)

W. Li, E.H. Cho, Energy Fuels 19 (2005) 499 (https://doi.org/10.1021/ef0400767)

H. Karaca, K. Ceylan, Fuel Process. Technol. 50 (1997) 19 (https://doi.org/10.1016/S0378-3820(96)01042-9)

A. A. Yahya, N. Ali, N. L. Mohd Kamal, S. Shahidan, S. Beddu, M. F. Nuruddin, N. Shafiq, MATEC Web Conf. 103 (2017) 01004 (https://doi.org/10.1051/matecconf/201710301004)

J. Wang, A. Tomita, Ind. Eng. Chem. Res. 36 (1997) 1464 (https://doi.org/10.1021/ie960516k)

S. Mukherjee, P. C. Borthakur, Fuel 80 (2001) 2037 (https://doi.org/10.1016/S0016-2361(01)00094-1)

I. C. Cardona, M. A. Márquez, Fuel Process. Technol. 90 (2009) 1099 (https://doi.org/10.1016/j.fuproc.2009.04.022)

Energy Resources of the Republic of Serbia, http://www.smeits.rs/include/data/docs0066.doc (last accessed July 19, 2021) (in Serbian)

D. Životić, B. Jovančićević, J. Schwarzbauer, O. Cvetković, I. Gržetić, M. Ercegovac, K. Stojanović, A. Šajnović, Int. J. Coal Geol. 81 (2010) 227 (https://doi.org/10.1016/j.coal.2009.07.012)

N. Vuković, D. Životić, J. G. Mendonça Filho, T. Kravić-Stevović, M. Hámor-Vidó, J. O. Mendonça, K. Stojanović, Int. J. Coal Geol. 154-155 (2016) 213 (http://doi.org/10.1016/j.coal.2016.01.007)

ASTM D3172: Standard Practice for Proximate Analysis of Coal and Coke , 2013

ISO 334: Solid mineral fuels – Determination of total sulfur – Eschka method, 2013

S. K. Behera, S. Chakraborty, B. C. Meikap, Int. J. Coal Sci. Technol. 5 (2018) 142 (https://doi.org/10.1007/s40789-018-0208-3).

Most read articles by the same author(s)