DFT-based calculations of silicon complex structures in KF–KCl–K2SiF6 and KF–KCl–K2SiF6–SiO2 melts

Main Article Content

Alexey S. Vorobev
Andrey Isakov
http://orcid.org/0000-0002-0192-3048
Alexander Galashev
Yurii P. Zaikov

Abstract

The length and energy of bonds in the complex anions of silicon formed in KF−KCl−K2SiF6 and KF−KCl−K2SiF6–SiO2 melts were evaluated using the method of first-principles molecular dynamics, accomplished by means of the Siesta program. The effect of K+ (from the second coordination sphere) on the stability of these complexes was studied. The bond lengths in the silicon complexes was found to change with increasing amount of the potas­sium ions. It was established that the following complexes [SiO4]4-, [SiO3F]3- and [SiF6]2- are the most stable in KF−KCl−K2SiF6 and KF−KCl–K2SiF6–SiO2 melts. The [SiO4]4- and [SiF6]2- complexes are thermally stable in the molten salt in the temperature range of 923–1073 K, whereas the [SiF7]3- structure, which is typical for the lattice of crystalline 3SiF7, is unstable in this tempera­ture range. In the KF−KCl−K2SiF6−SiO2 melts, conditions above 1043 K were created allowing the transformation of [SiО3F]3- into [SiO4]4-. Within the studied temperature mode, the Si–F bond length is in the range 1.5–1.9 Å and the Si–O bond lengths is 1.5–1.7 Å. The obtained results are in a good agree­ment with in situ data of Raman spectroscopy for the KF−KCl−K2SiF6 and KF–KCl–K2SiF6–SiO2 melts.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. S. Vorobev, A. Isakov, A. Galashev, and Y. P. Zaikov, “DFT-based calculations of silicon complex structures in KF–KCl–K2SiF6 and KF–KCl–K2SiF6–SiO2 melts”, J. Serb. Chem. Soc., vol. 84, no. 10, pp. 1129–1142, Nov. 2019.
Section
Theoretical Chemistry
Author Biographies

Alexey S. Vorobev, Institute of High Temperature Electrochemistry Ural Branch Russian Academy of Sciences, S. Kovalevskaya St., 22, 620990 Ekaterinburg

Lab of electrocrystallization and high-temperature electroplating

 Junior Reseacher

Andrey Isakov, Institute of High Temperature Electrochemistry Ural Branch Russian Academy of Sciences, S. Kovalevskaya St., 22, 620990 Ekaterinburg

Lab of electrocrystallization and high-temperature electroplating

Head of Lab

Alexander Galashev, Institute of High Temperature Electrochemistry Ural Branch Russian Academy of Sciences, S. Kovalevskaya St., 22, 620990 Ekaterinburg and Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg 620002

Lab of electrode processes

Chief Researcher

Yurii P. Zaikov, Institute of High Temperature Electrochemistry Ural Branch Russian Academy of Sciences, S. Kovalevskaya St., 22, 620990 Ekaterinburg and Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg 620002

Institute of High Temperature Electrochemistry
Ural Branch Russian Academy of Sciences

Scientific Director of the Institute

Ural Federal University named after the first President of Russia B. N. Yeltsin

Head of the Department of Electrochemical Production Technology

References

J. Dai, H. Han, Q. Li, P. Huai, J. Mol. Liq. 213 (2016) 17 (https://doi.org/10.1016/j.molliq.2015.10.053)

A. Salyulev, A. Potapov, V. Khokhlov, V. Shishkin, Electrochim. Acta 257 (2017) 510 (https://doi.org/10.1016/j.electacta.2017.09.154)

K. Yasuda, K. Saeki, T. Kato, R. Hagiwara, T. Nohira, J. Electrochem. Soc. 165 16 (2018) D825 (https://doi.org/10.1149/2.1141816jes)

A. N. Baraboshkin Electroctystalization of metals in molten salts, Nauka, Moscow, 1976, p. 280 (in Russian)

D. A. Vetrova, A. V. Popova, S. A. Kuznetsov, ECS Transactions 86 14 (2018) 69 (https://doi.org/10.1149/08614.0069ecst)

D. A. Vetrova, S. A. Kuznetsov, Russian Metallurgy (Metally). 2 (2017) 100 (https://link.springer.com/article/10.1134%2FS0036029517020148)

A. Kataev, O. Tkacheva, I. Zakiryanova, A. Apisarov, A. Dedyukhin, Yu. Zaykov. J. Mol. Liq. 231 (2017) 149 (https://doi.org/10.1016/j.molliq.2017.02.021)

J. Shen, H. Hu, M. Xu, H. Liu, K. Xu, X. Zhang, H. Yao, I. Naruse. Fuel. 207 (2017) 365 (https://doi.org/10.1016/j.fuel.2017.06.079)

Y. P. Zaykov, A. V. Isakov, I. D. Zakiryanova, O. V. Chemezov, A. A. Redkin. J. Phys. Chem. B 118 (2014) 1584 (https://pubs.acs.org/doi/10.1021/jp4086816)

A. G. Kalampounias, G. Tsilomelekis, S. Boghosian. Vib. Spectrosc. 97 (2018) 85 (https://doi.org/10.1016/j.vibspec.2018.06.005)

J-B. Liu, X. Chen, Y-H. Qiu, C-F. Xu, W.H. Eugen Schwarz, J. Li. J. Phys. Chem. B. 118 (2014) 13954 (https://pubs.acs.org/doi/10.1021/jp509425p)

C. Dong, X. Song, J. Zhang, D. Liu, E. J. Meijer, J. Yu. Thermochim. Acta 670 (2018) 35 (https://doi.org/10.1016/j.tca.2018.05.017)

J. M. Soler, E. Artacho, J. D. Gale, A. Garcıa, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matter. 14 (2002) 2745 (https://iopscience.iop.org/article/10.1088/0953-8984/14/11/302/meta)

C. J. Cramer, John Wiley & Sons, Ltd., Minneapolis, 2004, p. 618 (ISBN 978-0-470-09182-1)

M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 110(11) (1999) 5029 (https://aip.scitation.org/doi/10.1063/1.478401)

O. I. Boyko, R.V. Chernov. Ukrainian chemistry journal. 49 5 (1983) 548 (in russian)

D.L. Deadmore, W.F. Bradley. Acta Cryst. 15 (1962) 186 (https://doi.org/10.1107/S0365110X62000493)

J. H. James. Acta Cryst. C40 (1984) 570 (https://doi.org/10.1107/S0108270184004893)

R. V. Chernov, V.M. Moshnenko. Ukrainian chemistry journal 42 11 (1976) 1137 (in Russian)

R. V. Chernov, L.D. Dyubova. Russ. J. Chem. Technol. 2 (1989) 16

S. I. Zhuk, V. A. Isaev, O. V. Grishenkova, A. V. Isakov, A. P. Apisarov, Yu. P. Zaykov. J. Serb. Chem. Soc. 82 1 (2017) 51 (https://doi.org/10.2298/JSC160712109Z)