Electrochemical stability of metformin in NaHCO3 and Na2SO4 water solution at Au, GC and IrOx electrodes

Main Article Content

Jelena Lović
Jelena Lađarević
Dušan Mijin
Milka Jadranin
Slobodan Petrović
Milka Avramov Ivić

Abstract

In this study the electrochemical behavior of metformin (MET), oral antihyperglycaemic agent, was assayed at three different electrodes. The drug standard was investigated by cyclic voltammetry and square wave volta­mmetry via its electrooxidation at Au and glassy carbon electrode in 0.05 M NaHCO3. Under these conditions transformation of MET to corres­ponding N-carbonyl guanidine via oxime intermediate is suggested. The sta­bi­lity of MET was tested under directed stress conditions using IrOx elec­trode with sodium sulphate as an electrolyte and cyclic 4-amino-2-imino-1-me­thyl-1,2-dihydro-1,3,5-triazine appeared as the main end-product. The courses of the electrochemical pro­cesses at three electrodes were followed by UV spectro­scopy and evaluated by total organic carbon analysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Lović, J. Lađarević, D. Mijin, M. Jadranin, S. Petrović, and M. Avramov Ivić, “Electrochemical stability of metformin in NaHCO3 and Na2SO4 water solution at Au, GC and IrOx electrodes”, J. Serb. Chem. Soc., vol. 84, no. 11, pp. 1319–1327, Dec. 2019.
Section
In Memoriam Issue Devoted to Prof. Konstantin Popov

References

A. J. Scheen, P. J. Lefebvre, Drugs 55 (1998) 225 (https://doi.org/10.2165/00003495-199855020-00004)

A. J. Scheen, Clin. Pharmacokinet. 30 (1996) 359 (https://doi.org/10.2165/00003088-199630050-00003)

M. Scheurer, F. Sacher, H. J. Brauch, J. Environ. Monit. 11 (2009) 1608 (https://doi.org/10.1039/b909311g)

B. Salani, A. D. Rio, C. Marini, G. Sambuceti, R. Cordera, D. Maggi, Endocr. Relat. Cancer 21 (2014) R461 (https://doi.org/10.1530/ERC-14-0284)

B. Roig, Pharmaceuticals in the Environment- Current Knowledge and Need Assessment to Reduce Presence and Impact, IWA Publishing, London, 2010 p. 1–8 (https://doi.org/10.2166/9781780401430)

C. Trautwein, K. Kümmerer, Chemosphere 85 (2011) 765 (https://doi.org/10.1016/j.chemosphere.2011.06.057)

S. Tisler, C. Zwiener, Sci. Total Environ. 628–629 (2018) 1121 (https://doi.org/10.1016/j.scitotenv.2018.02.105)

S. Skrzypek, V. Mirčeski, W. Ciesielski, A. Sokołowski, R. Zakrzewski, J. Pharmaceut. Biomed. 45 (2007) 275 (https://doi.org/10.1016/j.jpba.2007.07.010)

S. Dehdashtian, M. B. Gholivand, M. Shamsipur, Z. Karimi, Sensor Actuat., B-Chem. 221 (2015) 807 (https://doi.org/10.1016/j.snb.2015.07.010)

X. Tian, J. Song, X. Luan, Y. Wang, Q. Shi, Anal. Bioanal. Chem. 386 (2006) 2081 (http://doi.org/10.1007/s00216-006-0869-4)

X. Tian, J. Song, J. Pharmaceut. Biomed. 44 (2007) 1192 (https://doi.org/10.1016/j.jpba.2007.04.014)

N. Sattarahmady, H. Heli, F. Faramarzi, Talanta 82 (2010) 1126 (https://doi.org/10.1016/j.talanta.2010.06.022)

M. B. Gholivand, L. Mohammadi-Behzad, Anal. Biochem. 438 (2013) 53 (http://doi.org/10.1016/j.ab.2013.03.019)

L. Zhao, L. Zhao, Y. Miao, C. Liu, Fenxi Shiyanshi 34 (2015) 654 (http://doi.org/10.13595/j.cnki.issn1000-0720.2015.0142) (in Chinese)

P. Chinnaiyan, S. G. Thampi, M. Kumar, M. Balachandran, Int. J. Environ. Sci. Technol. (2018) 1 (https://doi.org/10.1007/s13762-018-1935-0)

F. J. O. Quintão, J. R. L. Freitas, C. F. Machado, S. F. Aquino, S. Q. Silva, R. J. C. F. Afonso, Rapid Commun. Mass Spectrom. 30 (2016) 2360 (https://doi.org/10.1002/rcm.7724)

P. Trouillas, C. Marchetti, D. Bonnefont-Rousselot, R. Lazzaroni, D. Jore, M. Gardès-Albertd, F. Collin, Phys. Chem. Chem. Phys. 15 (2013) 9871 (https://doi.org/ 10.1039/c3cp50602a)

D. Narasimha, M. Prasada, J. N. Hussain, S. L. Sumanoja, V. Rajeswara, IJPCBS 3 (2013) 546

F. Collin, H. Khoury, D. Bonnefont-Rousselot, P. Therond, A. Legrand, D. Jore, M. Gardes-Albert, J. Mass Spectrom. 39 (2004) 890 (https://doi.org/10.1002/jms.656)

M. Avramov Ivić, J. Lović, S. Stevanović, N. D. Nikolić, N. Trišović, J. Lađarević, D. Vuković, S. Drmanić, A. Mladenović, M. Jadranin, S. D. Petrović, D. Mijin, J. Electroanal. Chem. 848 (2019) 113303 (https://doi.org/10.1016/j.jelechem.2019.113303)

E. Brillas, C.A. Martínez-Huitle, Appl. Catal., B-Environ. 166–167 (2015) 603 (https://doi.org/10.1016/j.apcatb.2014.11.016)

C. A. Martınez-Huitle, E. Brillas, Appl. Catal., B-Environ. 87 (2009) 105 (https://doi.org/10.1016/j.apcatb.2008.09.017)

N. R. Sheela, S. Muthu, S. Sampath Krishnan, Asian J. Chem. 22 (2010) 5049.

Most read articles by the same author(s)