Metal powder electrolysis: the shape of powder particles as a function of the exchange current density and overpotential for hydrogen evolution reactionion - Extended abstract
Main Article Content
Abstract
The short survey of the dependence of the shape of electrolytically produced powder particles on the exchange current density for metal deposition and overpotential for hydrogen evolution reaction is presented. The decrease of the exchange current density leads to a branching of dendrites and their transformation from needle-like and the two-dimensional (2D) fern-like to the three-dimensional (3D) pine-like shapes. Vigorous hydrogen evolution inhibits the dendritic growth leading to a formation of cauliflower-like and the spongy-like particles. The very thin needles were obtained by molten salt electrolysis. Mechanisms responsible for the formation of both the dendritic (the general theory of disperse deposits formation) and the cauliflower-like and the spongy-like particles (the concept of "effective overpotential") were also mentioned.
.Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
REFERENCES
M. Amiri, S. Nouhi, Y. Azizian-Kalandaragh, Mater. Chem. Phys. 155 (2015) 129 (https://doi.org/10.1016/j.matchemphys.2015.02.009)
K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović, Morphology of Electrochemically and Chemically Deposited Metals, Springer International Publishing, Berlin, 2016 (https://doi.org/10.1007/978-3-319-26073-0)
R. Winand, Electrochim. Acta 39 (1994) 1091 (https://doi.org/10.1016/0013-4686(94)E0023-S)
N. D. Nikolić, J. Electrochem. Sci. Eng. 10 (2020) 111 (http://dx.doi.org/10.5599/jese.707)
N. D. Nikolić, P. M. Živković, S. I. Stevanović, G. Branković, J. Serb. Chem. Soc. 81 (2016) 553 (http://dx.doi.org/10.2298/JSC151218028N)
N. D. Nikolić, Dj. Dj. Vaštag, P. M. Živković, B. Jokić, G. Branković, Adv. Powder Technol. 24 (2013) 674 (http://dx.doi.org/10.1016/j.apt.2012.12.008)
N. D. Nikolić, P. M. Živković, J. D. Lović, G. Branković, J. Electroanal. Chem. 785 (2017) 65 (https://doi.org/10.1016/j.jelechem.2016.12.024)
N. D. Nikolić, Lj. Avramović, E. R. Ivanović, V. M. Maksimović, Z. Baščarević, N. Ignjatović, Trans. Nonferrous Met. Soc. China 29 (2019) 1275 (http://dx.doi.org/10.1016/S1003-6326(19)65034-X)
N. D. Nikolić, P. M. Živković, M. G. Pavlović, Z. Baščarević, J. Serb. Chem. Soc. 84 (2019) 1209 (https://doi.org/10.2298/JSC190522066N)
V. D. Jović, B. M. Jović, M. G. Pavlović, Electrochim. Acta 51 (2006) 5468 (http://dx.doi.org/10.1016/j.electacta.2006.02.022)
V. S. Cvetković, N. M. Vukićević, N. D. Nikolić, Z. Baščarević, T. S. Barudžija, J. N. Jovićević, J. Electroanal. Chem. 842 (2019) 168 (https://doi.org/10.1016/j.jelechem.2019.04.067)
K. I. Popov, N. D. Nikolić, in Electrochem. Prod. of Met. Powders, Ser. Mod. Asp. Electrochem S. S. Djokić, (Ed.), Vol. 54, Springer, Berlin, 2012, pp. 1–62 (https://doi.org/10.1007/978-1-4614-2380-5_1)
N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, M. G. Pavlović, J. Electroanal. Chem. 588 (2006) 88 (https://doi.org/10.11896/j.issn.1005-023X.2018.19.006).