Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial Scientific paper

Main Article Content

Marija Prekajski Đorđević
https://orcid.org/0000-0002-5704-152X
Aleksandra Zarubica
Ana Kalijadis
https://orcid.org/0000-0002-6897-4691
Biljana Babić
https://orcid.org/0000-0002-6269-7822
Svetlana Butulija
https://orcid.org/0000-0002-4724-9087
Jelena Maletaškić
https://orcid.org/0000-0002-3889-8499
Branko Matović
https://orcid.org/0000-0001-8022-1863

Abstract

Nanoemulsion technique based on Ouzo effect was applied for the fast and simple synthesis of Ag3PO4 at room temperature. X-ray powder dif­fraction analysis and Raman spectroscopy reviled that synthesized powder was single-phase. Using scanning electron microscopy analysis, it was found that the syn­thesized Ag3PO4 particles were near-spherical shape with an average diameter of 100 nm. The high value for the specific surface area of obtained powder was measured by Brunauer–Emmet–Teller method. Finally, the Ag3PO4 product was used as a photocatalyst for the photodegradation of crystal violet dye in an aque­ous solution. Nanoemulsion strategy procedure provides a simple pathway to obtain a highly efficient single-phase Ag3PO4 photocatalyst.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Prekajski Đorđević, “Nanoemulsification synthesis route for obtaining highly efficient Ag3PO4 photocatalytic nanomaterial: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 11, pp. 1285–1296, Oct. 2022.
Section
Physical Chemistry

References

N. Atar, A. Olgun, S. Wang, Chem. Eng. J. 192 (2012) 1 (https://doi.org/10.1016/j.cej.2012.03.067)

N. Atar, A. Olgun, S. Wang, S. Liu, J. Chem. Eng. Data 56 (2011) 508 (https://doi.org/10.1021/je100993m)

N. Atar, T. Eren, M. L. Yola, H. Karimi-Maleh, B. Demirdögena, RSC Adv. 5 (2015) 26402 (https://doi.org/10.1039/C5RA03735B)

A. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev. 112 (2012) 1555 (https://doi.org/10.1021/cr100454n)

Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers, Nat. Mater. 9 (2010) 559 (https://doi.org/10.1038/nmat2780)

G. H. Huang, Z. L. Ma, W. Q. Huang, Y. Tian,1 C. Jiao, Z. M. Yang, Z. Wan, A. Pan, J. Nanomater. 2013 (2013) 1 (https://doi.org/10.1155/2013/371356)

H. Wang, Y. S. Bai, J. T. Yang, X. Lang, J. Li, L. Guo, Chem. Eur. J. 18 (2012) 5524 (https://doi.org/10.1002/chem.201103189)

Z. M. Yang, Y. Y. Liu, L. Xu, G. F. Huang, W. Q. Huang, Mater. Lett. 133 (2014) 139 (https://doi.org/10.1016/j.matlet.2014.07.004)

X. Guan, J. Shi, L. Guo, Int. J. Hydrogen Energy 38 (2013) 11870 (https://doi.org/10.1016/j.ijhydene.2013.07.017)

Z. M. Yang, Y. Tian, G. F. Huang, W. Q. Huang, Y. Y. Liu, C. Jiao, Z. Wan, X. G. Yan, A. Pan, Mater. Lett. 116 (2014) 209 (https://doi.org/10.1016/j.matlet.2013.11.041)

P. Dong, Y. Yin, N. Xu, R. Guana, G. Hou, Y. Wang, Mater. Res. Bull. 60 (2014) 682 (https://doi.org/10.1016/j.materresbull.2014.09.047)

L. Dong, P. Wang, S. Wang, P. Lei, Y. Wang, Mater. Lett. 134 (2014) 158 (https://doi.org/10.1016/j.matlet.2014.07.094)

X. Guo, C. Chen, S. Yin, L. Huang, W. Qin, J. Alloy. Compd. 619 (2015) 293 (https://doi.org/10.1016/j.jallcom.2014.09.065)

Y. Bi, H. Hu, S. Ouyang, G. Lu, J. Cao, Jinhua Ye, Chem. Commun. 48 (2012) 3748 (https://doi.org/10.1039/C2CC30363A)

Z. Jiao, Y. Zhang, H. Yu, G. Lu, J. Yeb, Y. Bi, Chem. Commun. 49 (2013) 636 (https://doi.org/10.1039/C2CC37324F)

J. D. Wang, J. K. Liu, C. X. Luo, Y. Lu, X. H. Yang, Cryst. Growth Des. 13 (2013) 4837 (https://doi.org/10.1021/cg4009812)

S. Kumar, T. Surendar, V. Shanker, Mater. Lett. 123 (2014) 172 (https://doi.org/10.1016/j.matlet.2014.02.106)

M. Yu Koroleva, E.V. Yurtov, Russ. Chem. Rev. 81 (2012) 21 (https://doi.org/10.1070/RC2012v081n01ABEH004219 )

F. Ganachaud, J. L. Katz. Chem. Phys. Chem. 6 (2005) 209 (https://doi.org/10.1002/cphc.200400527)

W. Y. Zhou, M. Wang, W. L. Cheung, B. C. Guo, D. M. Jia. J. Mater. Sci. Mater. Med. 19 (2008) 103 (https://doi.org/10.1007/s10856-007-3156-9)

M. Prekajski, M. Mirković, B. Todorović B, A. Matković, M. Marinović-Cincović, J. Luković. B. Matović, J. Eur. Ceram. Soc. 36 (2016) 1293 (https://doi.org/10.1016/j.jeurceramsoc.2015.11.045)

PDXL Version 2.0.3.0 Integrated X-ray Powder Diffraction Software, Rigaku Corporation, Tokyo, 2011(https://www.rigaku.com/support/software/pdxl)

American Mineralogist Crystal Structure Database (AMCSD), (http://rruff.geo.arizona.edu/AMS/amcsd.php, accessed in August, 2021)

P. Scherrer, Gött. Nachr. 2 (1918) 98 (http://www.digizeitschriften.de/download/PPN252457811_1918/PPN252457811_1918___log15.pdf)

E. P. Barret, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373 (https://doi.org/10.1021/ja01145a126)

B. C. Lippens, B. G. Linsen, J. H. De Boer, J. Catal. 3 (1964) 32 (https://doi.org/10.1016/0021-9517(64)90089-2)

L. Helmholz, J. Chem. Phys. 4 (1936) 316 (https://doi.org/10.1063/1.1749847)

J. F. Cruz-Filho, T. M. S. Costa, M. S. Lima, L. J. Silva, R. S. Santos, L. S. Cavalcante, E. Longo, G. E. Luz Jr., J. Photochem. Photobiol. A 377 (2019) 14 (https://doi.org/10.1016/j.jphotochem.2019.03.031 )

K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653 (https://doi.org/10.1107/S0021889808012016)

G. Botelho, J. C. Sczancoski, J. Andres, L. Gracia, E. Longo, J. Phys. Chem., C 119 (2015) 6293 (https://doi.org/10.1021/jp512111v)

B. Chai, J. Li, Q. Xu, Ind. Eng. Chem. Res. 53 (2014) 8744 (https://doi.org/10.1021/ie4041065)

Z. Wang, L. Yin, M. Zhang, G. Zhou, H. Fei, H. Shi, H. Dai, J. Mater. Sci. 49 (2014) 1585 (https://doi.org/10.1007/s10853-013-7841-4)

F. Ganachaud, J. L. Katz, Chem. Phys. Chem. 6 (2005) 209 (https://doi.org/10.1002/cphc.200400527)

K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure. Appl. Chem. 57 (1985) 603

S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Charactrization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Dordrecht, 2004, p. 44 (ISBN 978-1-4020-2303-3)

K. Hatakeyama, M. Okuda, T. Kuki, T. Esaka, Mater. Res. Bull. 47 (2012) 4478 (https://doi.org/10.1016/j.materresbull.2012.09.057)

L. Luo, Y. Li, J. Hou, Y. Yang, Appl. Surf. Sci. 319 (2014) 332 (https://doi.org/10.1016/j.apsusc.2014.04.154).

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.