Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand

Main Article Content

Tanja Keškić
Dušanka Radanović
Andrej Pevec
Iztok Turel
Maja Gruden
Katarina Andjelkovic
Dragana Mitić
Matija Zlatar
Božidar Čobeljić

Abstract

Binuclear double end-on azido bridged Ni(II) complex (1) with com­position [Ni2L2(μ-1,1-N3)2(N3)2]×6H2O, (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin) was synthesized and cha­racterized by single-crystal X-ray diffraction method. Ni(II) ions are hexa­coor­dinated with the tridentate heteroaromatic hydrazone-based ligand and three azido ligands (one terminal and two are end-on bridges). DFT calcul­at­ions revealed that coupling between two Ni(II) centers is ferromagnetic in agreement with binuclear Ni(II) complexes with similar structures.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
T. Keškić, “Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand”, J. Serb. Chem. Soc., vol. 85, no. 10, pp. 1279–1290, Oct. 2020.
Section
Inorganic Chemistry

References

J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Corteś, L. Lezama, T. Rojo, Coord. Chem. Rev. 193–195 (1999) 1027 (https://doi.org/10.1016/S0010-8545(99)00051-X)

E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc. 120 (1998) 11122 (https://pubs.acs.org/doi/abs/10.1021/ja981661n)

A. Escuer, G. Aromí, Eur. J. Inorg. Chem. (2006) 4721 (https://doi.org/10.1002/ejic.200600552)

F.-C. Liu, Y.-F. Zeng, J.-R. Li, X.-H. Bu, H.-J. Zhang, J. Ribas, Inorg. Chem. 44 (2005) 7298 (https://pubs.acs.org/doi/abs/10.1021/ic051030b)

P. Chaudhuri, R. Wagner, S. Khanra, T. Weyhermüller, Dalton Trans. (2006) 4962 (https://doi.org/10.1039/B610308A)

J. Ribas, M. Monfort, C. Diaz, C. Bastos, X. Solans, Inorg. Chem. 33 (1994) 484 (https://doi.org/10.1021/ic00081a015)

M. Č. Romanović, B. R. Čobeljić, A. Pevec, I. Turel, V. Spasojević, A. A. Tsaturyan, I. N. Shcherbakov, K. K. Anđelković, M. Milenković, D. Radanović, M. R. Milenković, Polyhedron 128 (2017) 30 (https://doi.org/10.1016/j.poly.2017.02.039)

S. Sarkar, A. Mondal, M.S. El Fallah, J. Ribas, D. Chopra, H. Stoeckli-Evans, K.K. Rajak, Polyhedron 25 (2006) 25 (https://doi.org/10.1016/j.poly.2005.06.059)

H.-D. Bian, W. Gu, Q. Yu, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002 (https://doi.org/10.1016/j.poly.2005.06.011)

S. Liang, Z. Liu, N. Liu, C. Liu, X. Di, J. Zhang, J. Coord. Chem. 63 (2010) 3441 (https://doi.org/10.1080/00958972.2010.512386)

S.S. Massoud, F.R. Louka, Y.K. Obaid, R. Vicente, J. Ribas, R.C. Fischer, F.A. Mautner, Dalton Trans. 42 (2013) 3968 (https://pubs.rsc.org/en/content/articlelanding/2013/dt/c2dt32540c)

R. Cortés, J.I. Ruiz de Larramendi, L. Lezama, T. Rojo, K. Urtiaga, M.I. Arriortua, J. Chem. Soc. Dalton Trans. (1992) 2723 (https://doi.org/10.1039/DT9920002723)

M.G. Barandika, R. Cortés, L. Lezama, M.K. Urtiaga, M.I. Arriortua, T. Rojo, J. Chem. Soc., Dalton Trans. (1999) 2971 (https://doi.org/10.1039/A903558C)

A. Escuer, R. Vicente, J. Ribas, X. Solans, Inorg. Chem. 34 (1995) 1793 (https://doi.org/10.1021/ic00111a029)

A. Solanki, M. Monfort, S.B. Kumar, J. Mol. Struct. 1050 (2013) 197 (https://doi.org/10.1016/j.molstruc.2013.07.036)

S. Nandi, D. Bannerjee, J.-S. Wu, T.-H. Lu, A.M.Z. Slawin, J.D. Woollins, J. Ribas, C. Sinha, Eur. J. Inorg. Chem. (2009) 3972 (https://doi.org/10.1002/ejic.200900423)

A. R. Jeong, J. W. Shin, J. H. Jeong, K. H. Bok, C. Kim, D. Jeong, J. Cho, S. Hayami, K. S. Min, Chem. Eur. J. 23 (2017) 3023 (https://doi.org/10.1002/chem.201604498)

A. R. Jeong, J. Choi, Y. Komatsumaru, S. Hayami, K. S. Min, Inorg. Chem. Commun. 86 (2017) 66 (https://doi.org/10.1016/j.inoche.2017.09.023)

S. Deoghoria, S. Sain, M. Soler, W.T. Wong, G. Christou, S.K. Bera, S.K. Chandra, Polyhedron 22 (2003) 257 (https://doi.org/10.1016/S0277-5387(02)01336-0)

S. Sain, S. Bid, A. Usman, H.-K. Fun, G. Aromí, X. Solans, S.K. Chandra, Inorg. Chim. Acta 358 (2005) 3362 (https://doi.org/10.1016/j.ica.2005.05.011)

A. N. Georgopoulou, C. R. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca, A. K. Boudlais, Inorg. Chem. 48 (2009) 3167 (https://doi.org/10.1021/ic900115c)

H.-Z. Kou, S. Hishiya, O. Sato, Inorg. Chim. Acta 361 (2008) 2396 (https://doi.org/10.1016/j.ica.2007.12.018)

Oxford Diffraction, CrysAlis PRO Software system, Oxford Diffraction Ltd., Yarnton, 2009

A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343 (https://doi.org/10.1107/S0021889892010331)

G. M. Sheldrick, Acta Crystallogr., A 64 (2008) 112–122 (https://doi.org/10.1107/S0108767307043930)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://doi.org/10.1002/wcms.81)

G. Jonkers, C. A. de Lange, L. Noodleman, E. J. Baerends, Mol. Phys. 46 (1982) 609 (https://doi.org/10.1080/00268978200101431)

L. Noodleman, J. Chem. Phys. 74 (1981) 5737 (https://doi.org/10.1063/1.440939)

L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131 (https://doi.org/10.1016/0301-0104(86)80192-6)

L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, D. A. Case, J. Am. Chem. Soc. 107 (1985) 3418 (https://doi.org/10.1021/ja00298a004)

F. Neese, Coord. Chem. Rev. 253 (2009) 526 (https://doi.org/10.1016/j.ccr.2008.05.014)

T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223 (https://doi.org/10.1016/S0009-2614(00)00166-4)

C. van Wüllen, J. Chem. Phys. 109 (1998) 392 (https://doi.org/10.1063/1.476576)

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297 (https://doi.org/10.1039/b508541a)

D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908 (https://doi.org/10.1021/ct800047t)

Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291 (https://doi.org/10.1021/ct100466k)

S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)

F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98 (https://doi.org/10.1016/j.chemphys.2008.10.036)

F. Neese, J. Chem. Phys. 115 (2001) 11080 (https://doi.org/10.1063/1.1419058)

D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229 (https://doi.org/10.1021/ct900090f)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (https://doi.org/10.1039/b515623h)

A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587 (https://doi.org/10.1007/s00214-007-0250-5)

A. D. Becke, Phys. Rev. A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

J. P. Perdew, Phys. Rev. B 33 (1986) 8822 (https://doi.org/10.1103/PhysRevB.33.8822)

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456 (https://doi.org/10.1002/jcc.21759)

F. Neese, J. Phys. Chem. Solids 65 (2004) 781 (https://doi.org/10.1016/J.JPCS.2003.11.015)

F. Neese, E. I. Solomon, Inorg. Chem. 37 (1998) 6568 (https://doi.org/10.1021/ic980948i)

F. Neese, J. Chem. Phys. 127 (2007) 164112 (https://doi.org/10.1063/1.2772857)

S. Sinnecker, F. Neese, J. Phys. Chem., A 110 (2006) 12267 (https://doi.org/10.1021/jp0643303)

M. Atanasov, C. A. A. Daul, C. Rauzy, Chem. Phys. Lett. 367 (2003) 737 (https://doi.org/10.1016/S0009-2614(02)01762-1)

M. Atanasov, C. A. Daul, C. Rauzy, in Optical Spectra and Chemical Bonding in Inorganic Compounds, D. M. P. Mingos, T. Schönherr (Eds.), Springer, Berlin, 2004, pp. 97–125 (https://doi.org/10.1007/b11308)

D. Darmanović, I. N. Shcherbakov, C. Duboc, V. Spasojević, D. Hanžel, K. Anđelković, D. Radanović, I. Turel, M. Milenković, M. Gruden, B. Čobeljić, M. Zlatar, J. Phys. Chem., C 123 (2019) 31142 (https://doi.org/10.1021/acs.jpcc.9b08066)

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931 (https://doi.org/10.1002/jcc.1056)

C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 99 (1998) 391 (https://doi.org/10.1007/s002140050353)

ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, https://www.scm.com

D. A. Pantazis, V. Krewald, M. Orio, F. Neese, Dalt. Trans. 39 (2010) 4959 (https://doi.org/10.1039/c001286f)

F. El-Khatib, B. Cahier, F. Shao, M. López-Jordà, R. Guillot, E. Rivière, H. Hafez, Z. Saad, J. J. Girerd, N. Guihéry, T. Mallah, Inorg. Chem. 56 (2017) 4601 (https://doi.org/10.1021/acs.inorgchem.7b00205)

I. Nemec, R. Herchel, M. Machata, Z. Trávníček, New J. Chem. 41 (2017) 11258 (https://doi.org/10.1039/c7nj02281f)

M. Zlatar, M. Gruden, O. Vassilyeva, E. Buvaylo, A. Ponomaryov, S. Zvyagin, J. Wosnitza, J. Krzystek, P. García-Fernández, C. Duboc, Inorg. Chem. 55 (2016) 1192 (https://doi.org/10.1021/acs.inorgchem.5b02368)

M. Gruden-Pavlović, M. Perić, M. Zlatar, P. García-Fernández, Chem. Sci. 5 (2014) 1453–1462 (https://doi.org/10.1039/C3SC52984C)

L. Wang, M. Zlatar, F. Vlahović, S. Demeshko, C. Philouze, F. Molton, M. Gennari, F. Meyer, C. Duboc, M. Gruden, Chem. - A Eur. J. 24 (2018) 11973 (https://doi.org/10.1002/chem.201705989)

S. Gómez-Coca, D. Aravena, R. Morales, E. Ruiz, Coord. Chem. Rev. 289–290 (2015) 379 (https://doi.org/10.1016/J.CCR.2015.01.021)

A. K. Bar, C. Pichon, J.-P. Sutter, Coord. Chem. Rev. 308 (2016) 346 (https://doi.org/10.1016/J.CCR.2015.06.013)

M. Pinsky, D. Avnir, 37 (1998) 5575 (https://doi.org/10.1021/IC9804925)

S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 249 (2005) 1693 (https://doi.org/10.1016/J.CCR.2005.03.031).

Most read articles by the same author(s)

<< < 1 2