Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study Scientific paper

Main Article Content

Jovana Araškov
https://orcid.org/0000-0001-5352-7752
Predrag Ristić
https://orcid.org/0000-0002-7489-6132
Aleksandar Višnjevac
https://orcid.org/0000-0002-4382-6908
Andrej Milivojac
https://orcid.org/0009-0009-7123-6153
Dragana Mitić
https://orcid.org/0000-0001-5167-808X
Nenad Filipović
https://orcid.org/0000-0003-2982-5324
Tamara Todorović
https://orcid.org/0000-0002-7740-3639

Abstract

An octahedral complex of Zn(II) with a ligand from a class of pyri­dine-based 1,3-selenazolyl-hydrazones was synthesized and characterized by IR and NMR spectroscopy and single crystal X-ray diffraction analysis. The purity of the complex was confirmed by elemental analysis. Two ligands are coordinated in the neutral NNN-tridentate form forming a complex cation, while the positive charge is neutralized by [ZnCl4]2-. Complex crystallizes in monoclinic C2/c space group with the Zn atoms situated in a special position. The packing features of the novel complex were analyzed using Hirshfeld surfaces, construction of 2D pseudosymmetric plot and DFT quantum mech­anical calculations and compared with the previously published sulfur-based isostere. The key difference in the structures, imposed by replacement of sulfur with selenium, were identified.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Araškov, “Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 12, pp. 1355–1367, Dec. 2023.
Section
Theme issue honoring Professor Vukadin Leovac's 80th birthday

Funding data

References

Y. Su, I. Cockerill, Y. Wang, Y. X. Qin, L. Chang, Y. Zheng, D. Zhu, Trends Biotechnol. 37 (2019) 428 (https://doi.org/10.1016/j.tibtech.2018.10.009)

T. Zhang, X. Li, Y. Qiu, P. Su, W. Xu, H. Zhong, H. Zhang, J. Catal. 357 (2018) 154 (https://doi.org/10.1016/j.jcat.2017.11.003)

D. Drozd, K. Szczubiałka, Ł. Łapok, M. Skiba, H. Patel, S. M. Gorun, M. Nowakowska, Appl. Catal., B 125 (2012) 35 (https://doi.org/10.1016/j.apcatb.2012.05.021)

J. B. Araškov, A. Višnjevac, J. Popović, V. Blagojević, H. S. Fernandes, S. F. Sousa, I. Novaković, J. M. Padrón, B. B. Holló, M. Monge, M. Rodríguez-Castillo, J. M. López-

-De-Luzuriaga, N. R. Filipović, T. R. Todorović, CrystEngComm 24 (2022) 5194 (https://doi.org/10.1039/d2ce00443g)

Z. Li, A. Dellali, J. Malik, M. Motevalli, R. M. Nix, T. Olukoya, Y. Peng, H. Ye, W. P. Gillin, I. Hernández, P. B. Wyatt, Inorg. Chem. 52 (2013) 1379 (https://doi.org/10.1021/ic302063u)

S. D. Han, N. N. Rajput, X. Qu, B. Pan, M. He, M. S. Ferrandon, C. Liao, K. A. Persson, A. K. Burrell, ACS Appl. Mater. Interfaces 8 (2016) 3021 (https://doi.org/10.1021/acsami.5b10024)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954)

P. Ristić, V. Blagojević, G. Janjić, M. Rodić, P. Vulić, M. Donnard, M. Gulea, A. Chylewska, M. Makowski, T. Todorović, N. Filipović, Cryst. Growth Des. 20 (2020) 3018 (https://doi.org/10.1021/acs.cgd.9b01661)

N. J. Williams, W. Gan, J. H. Reibenspies, R. D. Hancock, Inorg. Chem. 48 (2009) 1407 (https://doi.org/10.1021/ic801403s)

Z. Xun-Zhong, F. An-Sheng, Z. Fu-Ran, L. Min-Cheng, L. Yan-Zhi, M. Meng, L. Yu, Bioinorg. Chem. Appl. 2020 (2020) 1 (https://doi.org/10.1155/2020/8852470)

X. Zou, Y. Liao, C. Yang, A. Feng, X. Xu, H. Jiang, Y. Li, J. Coord. Chem. 74 (2021) 1009 (https://doi.org/10.1080/00958972.2020.1869952)

J. B. Araškov, M. Nikolić, S. Armaković, S. Armaković, M. Rodić, A. Višnjevac, J. M. Padrón, T. R. Todorović, N. R. Filipović, J. Mol. Struct. 1240 (2021) 130512 (https://doi.org/10.1016/j.molstruc.2021.130512)

L. K. Durgeswari, R. K. Ganta, Y. L. N. Murthy, Russ. J. Org. Chem. 57 (2021) 1552 (https://doi.org/10.1134/s1070428021090232)

A. A. Alfi, A. Alharbi, J. Qurban, M. M. Abualnaja, H. M. Abumelha, F. A. Saad, N. M. El-Metwaly, J. Mol. Struct. 1267 (2022) 133582 (https://doi.org/10.1016/j.molstruc.2022.133582)

V. A. Adole, R. A. More, B. S. Jagdale, T. B. Pawar, S. S. Chobe, ChemistrySelect 5 (2020) 2778 (https://doi.org/10.1002/slct.201904609)

S. Abu-Melha, Pigment Resin Technol. 48 (2019) 375 (https://doi.org/10.1108/PRT-09-2018-0102)

G. S. Masaret, ChemistrySelect 6 (2021) 974 (https://doi.org/10.1002/slct.202004304)

M. S. Shah, M. M. Rahman, M. D. Islam, A. Al-Macktuf, J. U. Ahmed, H. Nishino, M. A. Haque, J. Mol. Struct. 1248 (2022) 131465 (https://doi.org/10.1016/j.molstruc.2021.131465)

O. A. El-Khouly, M. A. Henen, M. A. A. El-Sayed, M. I. Shabaan, S. M. El-Messery, Bioorganic Med. Chem. 31 (2021) 115976 (https://doi.org/10.1016/j.bmc.2020.115976)

R. M. Kassab, S. M. Gomha, S. A. Al-Hussain, A. S. Abo Dena, M. M. Abdel-Aziz, M. E. A. Zaki, Z. A. Muhammad, Arab. J. Chem. 14 (2021) 103396 (https://doi.org/10.1016/j.arabjc.2021.103396)

S. Abu-Melha, Arab. J. Chem. 15 (2022) 103898 (https://doi.org/10.1016/j.arabjc.2022.103898)

A. Y. Alzahrani, Y. A. Ammar, M. Abu-Elghait, M. A. Salem, M. A. Assiri, T. E. Ali, A. Ragab, Bioorg. Chem. 119 (2022) 105571 (https://doi.org/10.1016/j.bioorg.2021.105571)

A. Pricopie, I. Ionuţ, G. Marc, A. Arseniu, L. Vlase, A. Grozav, L. Găină, D. C. Vodnar, A. Pîrnău, B. Tiperciuc, O. Oniga, Molecules 24 (2019) 3435 (https://doi.org/10.3390/molecules24193435)

N. J. C. Oliveira, I. N. S. Teixeira, P. O. Fernandes, G. C. Veríssimo, A. D. Valério, C. P. de S. Moreira, T. R. Freitas, A. C. V. Fonseca, A. de P. Sabino, S. Johann, V. G. Maltarollo, R. B. de Oliveira, J. Mol. Struct. 1267 (2022) (https://doi.org/10.1016/j.molstruc.2022.133573)

R. Gondru, S. Kanugala, S. Raj, C. Ganesh Kumar, M. Pasupuleti, J. Banothu, R. Bavantula, Bioorganic Med. Chem. Lett. 33 (2021) 127746 (https://doi.org/10.1016/j.bmcl.2020.127746)

S. Mor, S. Sindhu, S. Nagoria, M. Khatri, P. Garg, H. Sandhu, A. Kumar, J. Heterocycl. Chem. 56 (2019) 1622 (https://doi.org/10.1002/jhet.3548)

M. R. Shaaban, T. A. Farghaly, A. M. R. Alsaedi, Polycycl. Aromat. Compd. 42 (2022) 2521 (https://doi.org/10.1080/10406638.2020.1837887)

A. Pricopie, M. Focşan, I. Ionuţ, G. Marc, L. Vlase, L. Găină, D. C. Vodnar, E. Simon, G. Barta, A. Pîrnău, O. Oniga, Molecules 25 (2020) 1079 (https://doi.org/10.3390/molecules25051079)

S. S. Jadav, V. N. Badavath, R. Ganesan, N. M. Ganta, D. Besson, V. Jayaprakash, Anti-

-Infective Agents 18 (2018) 101 (https://doi.org/10.2174/2211352516666181016122537)

M. V. de O. Cardoso, G. B. de Oliveira Filho, L. R. P. de Siqueira, J. W. P. Espíndola, E. B. da Silva, A. P. de O. Mendes, V. R. A. Pereira, M. C. A. B. de Castro, R. S. Ferreira, F. S. Villela, F. M. R. da Costa, C. S. Meira, D. R. M. Moreira, M. B. P. Soares, A. C. L. Leite, Eur. J. Med. Chem. 180 (2019) 191 (https://doi.org/10.1016/j.ejmech.2019.07.018)

A. Višnjevac, J. B. Araškov, M. Nikolić, Ž. Bojić-Trbojević, A. Pirković, D. Dekanski, D. Mitić, V. Blagojević, N. R. Filipović, T. R. Todorović, J. Mol. Struct. 1281 (2023) 135193 (https://doi.org/10.1016/j.molstruc.2023.135193)

D. Radomska, R. Czarnomysy, D. Radomski, A. Bielawska, K. Bielawski, Nutrients 13 (2021) 1 (https://doi.org/10.3390/nu13051649)

D. Radomska, R. Czarnomysy, D. Radomski, K. Bielawski, Int. J. Mol. Sci. 22 (2021) 1 (https://doi.org/10.3390/ijms22031009)

N. R. Filipović, H. Elshaflu, S. Grubišić, L. S. Jovanović, M. Rodić, I. Novaković, A. Malešević, I. S. Djordjević, H. Li, N. Šojić, A. Marinković, T. R. Todorović, Dalt. Trans. 46 (2017) 2910 (https://doi.org/10.1039/c6dt04785h)

Agilent Technologies UK Ltd., CrysAlisPro Software system, 2014 (n.d.)

G. M. Sheldrick, Acta Crystallogr., C 71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

A. L. Spek, Acta Crystallogr., D 65 (2009) 148 (https://doi.org/10.1107/S090744490804362X)

C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 53 (2020) 226 (https://doi.org/10.1107/S1600576719014092)

L. J. Farrugia, J. Appl. Crystallogr. 45 (2012) 849 (https://doi.org/10.1107/S0021889812029111)

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 42 (2009) 339 (https://doi.org/10.1107/S0021889808042726)

P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Crystallogr. 54 (2021) 1006 (https://doi.org/10.1107/S1600576721002910)

Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009

T. Lecklider, EE Eval. Eng. 50 (2011) 36 (https://go.gale.com/ps/i.do?p=AONE&u=anon~9e9d6b50&id=GALE|A272486022&v=2.1&it=r&sid=googleScholar&asid=467f45d4)

A. D. Becke, J. Chem. Phys. 104 (1996) 1040 (https://doi.org/10.1063/1.470829)

A. D. Becke, J. Chem. Phys. 96 (1992) 2155 (https://doi.org/10.1063/1.462066)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560 (https://doi.org/10.1139/v92-079)

C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, D. A. Dixon, J. Phys. Chem. 96 (1992) 6630 (https://doi.org/10.1021/j100195a022)

C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 4 (2017) 575 (https://doi.org/10.1107/S205225251700848X).

Most read articles by the same author(s)