New rhodium(III)–ED3AP complex: Crystal structure, characterization and computational chemistry Scientific paper

Main Article Content

Marko D. Radovanović
https://orcid.org/0000-0001-8446-7107
Marija S. Ristić
https://orcid.org/0000-0002-7066-9928
Matija Zlatar
https://orcid.org/0000-0002-3809-0940
Frank W. Heinemann
https://orcid.org/0000-0002-9007-8404
Zoran D. Matović
https://orcid.org/0000-0002-5937-4424

Abstract

Only one (trans(O5)-Na[Rh(ED3AP)]∙3H2O) of possible two isomers was synthesized and characterized by single crystal X-ray analysis, IR and UV–Vis spectroscopy. Computational analysis of both isomers was performed with three levels of theory (B3LYP/TZV, BP86/TZV, OPBE/TZV), which gave consistent results. The more stable isomer by total energy and ligand field stabilization energy (LFSE) was trans(O5) which appeared in synthesis. The calculation of excited state energies complied with UV–Vis spectra, especially with OPBE functional. The results of excited state energy pointed out the dif­ferences among isomers in means of a splitting pattern of 1T2g excited state term. Both isomers have a strongly delocalized structure, according to the nat­ural bonding orbital (NBO) analysis. NBO analysis shows that the trans(O5) isomer is more stable than trans(O5O6) for approx. 87 kJ/mol. Therefore, only the trans(O5) isomer is present in the reaction mixture.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. D. Radovanović, M. S. Ristić, M. Zlatar, F. W. Heinemann, and Z. D. Matović, “New rhodium(III)–ED3AP complex: Crystal structure, characterization and computational chemistry: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 5, pp. 561–573, Feb. 2022.
Section
Inorganic Chemistry

Funding data

References

C. Drouza, M. Vlasiou, A. D. Keramidas, Dalt. Trans. 42 (2013) 11831 (https://doi.org/10.1039/C3DT50619C)

E. Repo, J. K. Warchoł, A. Bhatnagar, M. Sillanpää, J. Colloid Interface Sci. 358 (2011) 261 (https://doi.org/10.1016/j.jcis.2011.02.059)

M. E. Markowitz, J. F. Rosen, J. Pediatr. 119 (1991) 305 (https://doi.org/10.1289/ehp.99107437)

K. Sakthithasan, P. Lévy, J. Poupon, R. Garnier, Clin. Toxicol. 56 (2018) 1143 (https://doi.org/10.1080/15563650.2018.1478424)

G. A. Lamas, O. M. Issa, Curr. Cardiol. Rep. 18 (2016) 20 (https://doi.org/10.1007/s11886-015-0690-9)

F. G. Kari, W. Giger, Environ. Sci. Technol. 29 (1995) 2814 (https://doi.org/10.1021/es00011a018)

H. Xue, L. Sigg, F. Günter Kari, Environ. Sci. Technol. 29 (1995) 59 (https://doi.org/10.1021/es00001a007)

J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Nature 258 (1975) 598 (https://doi.org/10.1038/258598a0)

J. Carrasco-Castilla, A. J. Hernández-Álvarez, C. Jiménez-Martínez, C. Jacinto-Hern-ández, M. Alaiz, J. Girón-Calle, J. Vioque, G. Dávila-Ortiz, Food Chem. 135 (2012) 1789 (https://doi.org/10.1016/j.foodchem.2012.06.016)

M. S. Jeremić, M. D. Radovanović, F. W. Heinemann, M. M. Vasojević, Z. D. Matović, Polyhedron 169 (2019) 89 ( https://doi.org/10.1016/j.poly.2019.04.053)

M. S. Jeremić, H. Wadepohl, V. V. Kojić, D. S. Jakimov, R. Jelić, S. Popović, Z. D. Matović, P. Comba, RSC Adv. 7 (2017) 5282 (https://doi.org/10.1039/C6RA26199J)

M. S. Jeremić, M. D. Radovanović, F. Bisceglie, V. V. Kojić, R. Jelić, Z. D. Matović, Polyhedron 156 (2018) 19 (https://doi.org/10.1016/j.poly.2018.08.075)

K. D. Gailey, D. J. Radanović, M. Djuran, B. E. Douglas, J. Coord. Chem. 8 (1978) 161 (https://doi.org/10.1080/00958977808073090)

D. J. Radanovic, K. D. Gailey, M. I. Djuran, B. E. Douglas, J. Coord. Chem. 10 (1980) 115 (https://doi.org/10.1080/00958978008079858)

D. J. Radanovic, V. D. Miletic, T. Ama, H. Kawaguchi, Bull. Chem. Soc. Jpn. 71 (1998) 1605 (https://doi.org/10.1246/bcsj.71.1605)

D. J. Radanović, N. Sakagami, V. M. Ristanović, S. Kaizaki, Inorganica Chim. Acta 292 (1999) 16 (https://doi.org/10.1016/S0020-1693(99)00164-4)

D. J. Radanovic, T. Ama, D. M. Gurešic, D. M. Ristanovic, D. D. Radanovic, H. Kawaguchi, Bull. Chem. Soc. Jpn. 73 (2000) 2283 (https://doi.org/10.1246/bcsj.73.2283)

V. D. Miletić, A. Meetsma, P. J. van Koningsbruggen, Z. D. Matović, Inorg. Chem. Commun. 12 (2009) 720 (https://doi.org/10.1016/j.inoche.2009.05.029)

R. Pettinari, F. Marchetti, C. Pettinari, F. Condello, A. Petrini, R. Scopelliti, T. Riedel, P. J. Dyson, Dalt. Trans. 44 (2015) 20523 (https://doi.org/10.1039/C5DT03037D)

F. Hackenberg, L. Oehninger, H. Alborzinia, S. Can, I. Kitanovic, Y. Geldmacher, M. Kokoschka, S. Wölfl, I. Ott, W. S. Sheldrick, J. Inorg. Biochem. 105 (2011) 991 (https://doi.org/10.1016/j.jinorgbio.2011.04.006)

S. Mukhopadhyay, R. K. Gupta, R. P. Paitandi, N. K. Rana, G. Sharma, B. Koch, L. K. Rana, M. S. Hundal, D. S. Pandey, Organometallics 34 (2015) 4491 (https://doi.org/10.1021/acs.organomet.5b00475)

S. Mollin, R. Riedel, K. Harms, E. Meggers, J. Inorg. Biochem. 148 (2015) 11 (https://doi.org/10.1016/j.jinorgbio.2015.01.005)

T.-S. Kang, W. Wang, H.-J. Zhong, J.-X. Liang, C.-N. Ko, J.-J. Lu, X.-P. Chen, D.-L. Ma, C.-H. Leung, Biochim. Biophys. Acta - Gen. Subj. 1861 (2017) 256 (https://doi.org/10.1016/j.bbagen.2016.11.032)

A. Lapasam, V. Banothu, U. Addepally, M. R. Kollipara, J. Mol. Struct. 1191 (2019) 314 (https://doi.org/10.1016/j.molstruc.2019.04.116)

A. Lapasam, L. Dkhar, N. Joshi, K. M. Poluri, M. R. Kollipara, Inorg. Chim. Acta 484 (2019) 255 (https://doi.org/10.1016/j.ica.2018.09.067)

L. Shadap, S. Diamai, V. Banothu, D. P. S. Negi, U. Adepally, W. Kaminsky, M. R. Kollipara, J. Organomet. Chem. 884 (2019) 44 (https://doi.org/10.1016/j.jorganchem.2019.01.019)

S. S. Hassan, Appl. Organomet. Chem. 32 (2018) e4170 (https://doi.org/10.1002/aoc.4170)

E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 34 (2013) 2134 (https://doi.org/10.1002/jcc.23366)

M. Atanasov, C. A. Daul, C. Rauzy, Chem. Phys. Lett. 367 (2003) 737 (https://doi.org/10.1016/S0009-2614(02)01762-1)

SADABS v. 2.06, Bruker AXS, Inc., Madison, WI, 2002

G. M. Sheldrick, Acta Cryst. A 64 (2008) 112 (https://doi.org/10.1107/S0108767307043930)

G.M. Sheldrick, Acta Cryst. C 71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 42 (2009) 339 (https://doi.org/10.1107/S0021889808042726)

Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016 (https://gaussian.com/relnotes)

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 98 (1994) 11623 (https://doi.org/10.1021/j100096a001)

M. F. Peintinger, D. V. Oliveira, T. Bredow, J. Comput. Chem. 34 (2013) 451 (https://doi.org/10.1002/jcc.23153)

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931 (https://doi.org/10.1002/jcc.1056)

J. P. Perdew, Phys. Rev. B 34 (1986) 7406 (https://doi.org/10.1103/PhysRevB.34.7406)

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 (https://doi.org/10.1103/PhysRevLett.77.3865)

D. Cremer, J. A. Pople, J. Am. Chem. Soc. 97 (1975) 1354 (https://doi.org/10.1021/ja00839a011).

Most read articles by the same author(s)