Density functional theory calculation of lipophilicity for organophosphate type pesticides

Main Article Content

Filip Ž. Vlahović
Saša Ivanović
Matija Zlatar
Maja Gruden
http://orcid.org/0000-0002-0746-5754

Abstract

Density functional method with continuum solvation model is used for calculation of partition coefficient log KOW and determination of lipophilicity of 22 most frequently used organophosphate type pesticides. Excellent agreement with experimental data is obtained using three different density functional approximations (one local, one general gradient and one hybrid), and our result highlights DFT as a reliable and trustworthy method for calculation and of lipophilicity for this important class of molecules. Furthermore, calculated lipophilicity results are associated with experimentally determined LD50 and LC50 values, showing that the most toxic pesticides are these with transient characteristics (medium lipophilicity), although this concussion must be taken with a caution due to the many factors influencing the ingestion and action of a certain substance in the body beside lipophilicity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
F. Ž. Vlahović, S. Ivanović, M. Zlatar, and M. Gruden, “Density functional theory calculation of lipophilicity for organophosphate type pesticides”, J. Serb. Chem. Soc., vol. 82, no. 12, pp. 1369–1378, Dec. 2017.
Section
Theoretical Chemistry

References

B. Eskenazi, A. R. Marks, A. Bradman, K. Harley, D. B. Barr, C. Johnson, N. Morga, N. P. Jewell, Environ. Health Perspect. 115 (2007) 792

M. Balali-Mood, M. Abdollahi, Basic and Clinical Toxicology of Organophosphorus Compounds, Springer, London, 2013

World Health Report, World Health Organization, Geneva, 2004

M. Eddleston, M. R. Phillips, Br. Med. J. 328 (2004) 42

C. H. S. Rao, V. Venkateswarlu, T. Surender, M. Eddleston, N. A. Buckley, Trop. Med. Int. Health 10 (2005) 581

M. Eddleston, QJM: Int. J. Med. 93 (2000) 715

P. D. Leeson, B. Springthorpe, Nat. Rev. Drug. Discov. 6 (2007) 881

L. Karalliedde, S. Feldman, J. Henry, T. Marrs, Organophosphates and Health, Imperial College Press, London, 2001

R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 13 (2011) 10908

A. Jalan, R. W. Ashcraft, R. H. West, W. H. Green, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 106 (2010) 211

C. Giaginis, A. Tsantili‐Kakoulidou, J. Liq. Chromatogr. Relat. Technol. 31 (2007) 79

K. Valkó, J. Chromatogr., A 1037 (2004) 299

A. Tsantili-Kakoulidou, Encyclopedia of Chromatography, 2nd ed., CRC Press, Boca Raton, FL, 2005, p. 993

S. Balaz, Chem. Rev. 109 (2009) 1793

J. Sangster, Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, Wiley, New York, 1997

C. Giaginis, A. Tsantili-Kakoulidou, J. Pharm. Sci. 97 (2008) 2984

S. Aurijit, E. K. Glen, Curr. Top. Med. Chem. 10 (2010) 67

N. Bodor, P. Buchwald, Adv. Drug Deliv. Rev. 36 (1999) 229

M. Michalík, V. Lukeš, Acta Chim. Slov. 9 (2016) 89

C. J. Cramer, D. G. Truhlar, Chem. Rev. 99 (1999) 2161

J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B 113 (2009) 6378

J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999

C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 41 (2008) 760

K. S. A. M. Shweshein, F. Andric, A. Radoicic, M. Zlatar, M. Gruden-Pavlovic, Z. Tesic, D. Milojkovic-Opsenica, Sci. World J. 2014 (2014) 10

M. Remko, M. Swart, F. M. Bickelhaupt, Bioorg. Med. Chem. 14 (2006) 1715

C. C. R. Sutton, G. V. Franks, G. da Silva, J. Phys. Chem., B 116 (2012) 11999

E. L. M. Miguel, P. L. Silva, J. R. Pliego, J. Phys. Chem., B 118 (2014) 5730

M.-H. Baik, R. A. Friesner, J. Phys. Chem., A 106 (2002) 7407

R. E. Skyner, J. L. McDonagh, C. R. Groom, T. van Mourik, J. B. O. Mitchell, Phys. Chem. Chem. Phys. 17 (2015) 6174

M. Kolář, J. Fanfrlík, M. Lepšík, F. Forti, F. J. Luque, P. Hobza, J. Phys. Chem., B 117 (2013) 5950

M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian 09, Revision D.02, 2016

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396

Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215

P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 28 (1973) 213

R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B 115 (2011) 14556

Y. C. Martin, J. Med. Chem. 39 (1996) 1189

J. Sangster, J. Phys. Chem. Ref. Data 18 (1989) 1111

C. T. Garten, J. R. Trabalka, Environ. Sci. Technol. 17 (1983) 590

B. T. Bowman, W. W. Sans, J. Environ. Sci. Health, B 18 (1983) 667

P. Pernot, B. Civalleri, D. Presti and A. Savin, J. Phys. Chem., A 119 (2015) 5288

N. Bodor, P. Buchwald, Retrometabolic Drug Design and Targeting, Wiley, New York, 2012

P. Keen, in Concepts in Biochemical Pharmacology: Part 1, B. B. Brodie, J. R. Gillette, H. S. Ackerman, Eds., Springer, Heidelberg, 1971, p. 213

L. Shargel, A. Yu, S. Wu-Pong, Applied Biopharmaceutics & Pharmacokinetics, 6th ed., McGraw-Hill Education, New York, 2012.

Most read articles by the same author(s)