Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand
Main Article Content
Abstract
Binuclear double end-on azido bridged Ni(II) complex (1) with composition [Ni2L2(μ-1,1-N3)2(N3)2]×6H2O, (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin) was synthesized and characterized by single-crystal X-ray diffraction method. Ni(II) ions are hexacoordinated with the tridentate heteroaromatic hydrazone-based ligand and three azido ligands (one terminal and two are end-on bridges). DFT calculations revealed that coupling between two Ni(II) centers is ferromagnetic in agreement with binuclear Ni(II) complexes with similar structures.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Corteś, L. Lezama, T. Rojo, Coord. Chem. Rev. 193–195 (1999) 1027 (https://doi.org/10.1016/S0010-8545(99)00051-X)
E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc. 120 (1998) 11122 (https://pubs.acs.org/doi/abs/10.1021/ja981661n)
A. Escuer, G. Aromí, Eur. J. Inorg. Chem. (2006) 4721 (https://doi.org/10.1002/ejic.200600552)
F.-C. Liu, Y.-F. Zeng, J.-R. Li, X.-H. Bu, H.-J. Zhang, J. Ribas, Inorg. Chem. 44 (2005) 7298 (https://pubs.acs.org/doi/abs/10.1021/ic051030b)
P. Chaudhuri, R. Wagner, S. Khanra, T. Weyhermüller, Dalton Trans. (2006) 4962 (https://doi.org/10.1039/B610308A)
J. Ribas, M. Monfort, C. Diaz, C. Bastos, X. Solans, Inorg. Chem. 33 (1994) 484 (https://doi.org/10.1021/ic00081a015)
M. Č. Romanović, B. R. Čobeljić, A. Pevec, I. Turel, V. Spasojević, A. A. Tsaturyan, I. N. Shcherbakov, K. K. Anđelković, M. Milenković, D. Radanović, M. R. Milenković, Polyhedron 128 (2017) 30 (https://doi.org/10.1016/j.poly.2017.02.039)
S. Sarkar, A. Mondal, M.S. El Fallah, J. Ribas, D. Chopra, H. Stoeckli-Evans, K.K. Rajak, Polyhedron 25 (2006) 25 (https://doi.org/10.1016/j.poly.2005.06.059)
H.-D. Bian, W. Gu, Q. Yu, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002 (https://doi.org/10.1016/j.poly.2005.06.011)
S. Liang, Z. Liu, N. Liu, C. Liu, X. Di, J. Zhang, J. Coord. Chem. 63 (2010) 3441 (https://doi.org/10.1080/00958972.2010.512386)
S.S. Massoud, F.R. Louka, Y.K. Obaid, R. Vicente, J. Ribas, R.C. Fischer, F.A. Mautner, Dalton Trans. 42 (2013) 3968 (https://pubs.rsc.org/en/content/articlelanding/2013/dt/c2dt32540c)
R. Cortés, J.I. Ruiz de Larramendi, L. Lezama, T. Rojo, K. Urtiaga, M.I. Arriortua, J. Chem. Soc. Dalton Trans. (1992) 2723 (https://doi.org/10.1039/DT9920002723)
M.G. Barandika, R. Cortés, L. Lezama, M.K. Urtiaga, M.I. Arriortua, T. Rojo, J. Chem. Soc., Dalton Trans. (1999) 2971 (https://doi.org/10.1039/A903558C)
A. Escuer, R. Vicente, J. Ribas, X. Solans, Inorg. Chem. 34 (1995) 1793 (https://doi.org/10.1021/ic00111a029)
A. Solanki, M. Monfort, S.B. Kumar, J. Mol. Struct. 1050 (2013) 197 (https://doi.org/10.1016/j.molstruc.2013.07.036)
S. Nandi, D. Bannerjee, J.-S. Wu, T.-H. Lu, A.M.Z. Slawin, J.D. Woollins, J. Ribas, C. Sinha, Eur. J. Inorg. Chem. (2009) 3972 (https://doi.org/10.1002/ejic.200900423)
A. R. Jeong, J. W. Shin, J. H. Jeong, K. H. Bok, C. Kim, D. Jeong, J. Cho, S. Hayami, K. S. Min, Chem. Eur. J. 23 (2017) 3023 (https://doi.org/10.1002/chem.201604498)
A. R. Jeong, J. Choi, Y. Komatsumaru, S. Hayami, K. S. Min, Inorg. Chem. Commun. 86 (2017) 66 (https://doi.org/10.1016/j.inoche.2017.09.023)
S. Deoghoria, S. Sain, M. Soler, W.T. Wong, G. Christou, S.K. Bera, S.K. Chandra, Polyhedron 22 (2003) 257 (https://doi.org/10.1016/S0277-5387(02)01336-0)
S. Sain, S. Bid, A. Usman, H.-K. Fun, G. Aromí, X. Solans, S.K. Chandra, Inorg. Chim. Acta 358 (2005) 3362 (https://doi.org/10.1016/j.ica.2005.05.011)
A. N. Georgopoulou, C. R. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca, A. K. Boudlais, Inorg. Chem. 48 (2009) 3167 (https://doi.org/10.1021/ic900115c)
H.-Z. Kou, S. Hishiya, O. Sato, Inorg. Chim. Acta 361 (2008) 2396 (https://doi.org/10.1016/j.ica.2007.12.018)
Oxford Diffraction, CrysAlis PRO Software system, Oxford Diffraction Ltd., Yarnton, 2009
A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343 (https://doi.org/10.1107/S0021889892010331)
G. M. Sheldrick, Acta Crystallogr., A 64 (2008) 112–122 (https://doi.org/10.1107/S0108767307043930)
F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://doi.org/10.1002/wcms.81)
G. Jonkers, C. A. de Lange, L. Noodleman, E. J. Baerends, Mol. Phys. 46 (1982) 609 (https://doi.org/10.1080/00268978200101431)
L. Noodleman, J. Chem. Phys. 74 (1981) 5737 (https://doi.org/10.1063/1.440939)
L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131 (https://doi.org/10.1016/0301-0104(86)80192-6)
L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, D. A. Case, J. Am. Chem. Soc. 107 (1985) 3418 (https://doi.org/10.1021/ja00298a004)
F. Neese, Coord. Chem. Rev. 253 (2009) 526 (https://doi.org/10.1016/j.ccr.2008.05.014)
T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223 (https://doi.org/10.1016/S0009-2614(00)00166-4)
C. van Wüllen, J. Chem. Phys. 109 (1998) 392 (https://doi.org/10.1063/1.476576)
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297 (https://doi.org/10.1039/b508541a)
D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908 (https://doi.org/10.1021/ct800047t)
Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)
L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291 (https://doi.org/10.1021/ct100466k)
S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)
F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98 (https://doi.org/10.1016/j.chemphys.2008.10.036)
F. Neese, J. Chem. Phys. 115 (2001) 11080 (https://doi.org/10.1063/1.1419058)
D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229 (https://doi.org/10.1021/ct900090f)
F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (https://doi.org/10.1039/b515623h)
A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587 (https://doi.org/10.1007/s00214-007-0250-5)
A. D. Becke, Phys. Rev. A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)
J. P. Perdew, Phys. Rev. B 33 (1986) 8822 (https://doi.org/10.1103/PhysRevB.33.8822)
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456 (https://doi.org/10.1002/jcc.21759)
F. Neese, J. Phys. Chem. Solids 65 (2004) 781 (https://doi.org/10.1016/J.JPCS.2003.11.015)
F. Neese, E. I. Solomon, Inorg. Chem. 37 (1998) 6568 (https://doi.org/10.1021/ic980948i)
F. Neese, J. Chem. Phys. 127 (2007) 164112 (https://doi.org/10.1063/1.2772857)
S. Sinnecker, F. Neese, J. Phys. Chem., A 110 (2006) 12267 (https://doi.org/10.1021/jp0643303)
M. Atanasov, C. A. A. Daul, C. Rauzy, Chem. Phys. Lett. 367 (2003) 737 (https://doi.org/10.1016/S0009-2614(02)01762-1)
M. Atanasov, C. A. Daul, C. Rauzy, in Optical Spectra and Chemical Bonding in Inorganic Compounds, D. M. P. Mingos, T. Schönherr (Eds.), Springer, Berlin, 2004, pp. 97–125 (https://doi.org/10.1007/b11308)
D. Darmanović, I. N. Shcherbakov, C. Duboc, V. Spasojević, D. Hanžel, K. Anđelković, D. Radanović, I. Turel, M. Milenković, M. Gruden, B. Čobeljić, M. Zlatar, J. Phys. Chem., C 123 (2019) 31142 (https://doi.org/10.1021/acs.jpcc.9b08066)
G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931 (https://doi.org/10.1002/jcc.1056)
C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 99 (1998) 391 (https://doi.org/10.1007/s002140050353)
ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, https://www.scm.com
D. A. Pantazis, V. Krewald, M. Orio, F. Neese, Dalt. Trans. 39 (2010) 4959 (https://doi.org/10.1039/c001286f)
F. El-Khatib, B. Cahier, F. Shao, M. López-Jordà, R. Guillot, E. Rivière, H. Hafez, Z. Saad, J. J. Girerd, N. Guihéry, T. Mallah, Inorg. Chem. 56 (2017) 4601 (https://doi.org/10.1021/acs.inorgchem.7b00205)
I. Nemec, R. Herchel, M. Machata, Z. Trávníček, New J. Chem. 41 (2017) 11258 (https://doi.org/10.1039/c7nj02281f)
M. Zlatar, M. Gruden, O. Vassilyeva, E. Buvaylo, A. Ponomaryov, S. Zvyagin, J. Wosnitza, J. Krzystek, P. García-Fernández, C. Duboc, Inorg. Chem. 55 (2016) 1192 (https://doi.org/10.1021/acs.inorgchem.5b02368)
M. Gruden-Pavlović, M. Perić, M. Zlatar, P. García-Fernández, Chem. Sci. 5 (2014) 1453–1462 (https://doi.org/10.1039/C3SC52984C)
L. Wang, M. Zlatar, F. Vlahović, S. Demeshko, C. Philouze, F. Molton, M. Gennari, F. Meyer, C. Duboc, M. Gruden, Chem. - A Eur. J. 24 (2018) 11973 (https://doi.org/10.1002/chem.201705989)
S. Gómez-Coca, D. Aravena, R. Morales, E. Ruiz, Coord. Chem. Rev. 289–290 (2015) 379 (https://doi.org/10.1016/J.CCR.2015.01.021)
A. K. Bar, C. Pichon, J.-P. Sutter, Coord. Chem. Rev. 308 (2016) 346 (https://doi.org/10.1016/J.CCR.2015.06.013)
M. Pinsky, D. Avnir, 37 (1998) 5575 (https://doi.org/10.1021/IC9804925)
S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 249 (2005) 1693 (https://doi.org/10.1016/J.CCR.2005.03.031).